Functional electrical stimulation (FES) has the capacity to regenerate motion for individuals with spinal cord injuries. However, it is not straightforward to determine the stimulation parameters to generate a coordinated movement. Musculoskeletal models can provide a noninvasive simulation environment to estimate muscle force and activation timing sequences for a variety of tasks. Therefore, the purpose of this study was to develop a musculoskeletal model of the feline hindlimb for simulations to determine stimulation parameters for intrafascicular multielectrode stimulation (a method of FES). Additionally, we aimed to explore the differences in modeling neuromuscular compartments compared with representing these muscles as a single line of action. When comparing the modeled neuromuscular compartments of biceps femoris, sartorius, and semimembranosus to representations of these muscles as a single line of action, we observed that modeling the neuromuscular compartments of these three muscles generated different force and moment generating capacities when compared with single muscle representations. Differences as large as 4Nm (400% in biceps femoris) were computed between the summed moments of the neuromuscular compartments and the single muscle representations. Therefore, modeling neuromuscular compartments may be necessary to represent physiologically reasonable force and moment generating capacities of the feline hindlimb.

1.
McDonnall
,
D.
,
Clark
,
G. A.
, and
Normann
,
R. A.
, 2004, “
Selective Motor Unit Recruitment via Intrafascicular Multielectrode Stimulation
,”
Can. J. Physiol. Pharmacol.
0008-4212,
82
(
8–9
), pp.
599
609
.
2.
Dowden
,
B. R.
,
Wilder
,
A. M.
,
Hiatt
,
S. D.
,
Normann
,
R. A.
,
Brown
,
N. A. T.
, and
Clark
,
G. A.
, 2009, “
Selective and Graded Recruitment of Cat Hamstring Muscles With Intrafascicular Stimulation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
17
(
6
), pp.
545
552
.
3.
McDonnall
,
D.
,
Clark
,
G. A.
, and
Normann
,
R. A.
, 2004, “
Interleaved, Multisite Electrical Stimulation of Cat Sciatic Nerve Produces Fatigue-Resistant, Ripple-Free Motor Responses
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
12
(
2
), pp.
208
215
.
4.
Hahs
,
D. W.
, and
Stiles
,
R. N.
, 1989, “
Buckle Muscle Tension Transducer: What Does It Measure?
,”
J. Biomech.
0021-9290,
22
(
2
), pp.
165
166
.
5.
Herzog
,
W.
,
Archambault
,
J. M.
,
Leonard
,
T. R.
, and
Nguyen
,
H. K.
, 1996, “
Evaluation of the Implantable Force Transducer for Chronic Tendon-Force Recordings
,”
J. Biomech.
0021-9290,
29
(
1
), pp.
103
109
.
6.
Chae
,
J.
,
Knutson
,
J.
,
Hart
,
R.
, and
Fang
,
Z. P.
, 2001, “
Selectivity and Sensitivity of Intramuscular and Transcutaneous Electromyography Electrodes
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
80
(
5
), pp.
374
379
.
7.
Basmajian
,
J.
, and
Stecko
,
G.
, 1962, “
A New Bipolar Electrode for Electromyography
,”
J. Appl. Physiol.
8750-7587,
17
(
5
), p.
849
.
8.
Koo
,
T. K.
, and
Mak
,
A. F.
, 2005, “
Feasibility of Using EMG Driven Neuromusculoskeletal Model for Prediction of Dynamic Movement of the Elbow
,”
J. Electromyogr Kinesiol
1050-6411,
15
(
1
), pp.
12
26
.
9.
Czaplicki
,
A.
,
Silva
,
M.
,
Ambrosio
,
J.
,
Jesus
,
O.
, and
Abrantes
,
J.
, 2006, “
Estimation of the Muscle Force Distribution in Ballistic Motion Based on a Multibody Methodology
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
9
(
1
), pp.
45
54
.
10.
Happee
,
R.
, 1994, “
Inverse Dynamic Optimization Including Muscular Dynamics, A New Simulation Method Applied to Goal Directed Movements
,”
J. Biomech.
0021-9290,
27
(
7
), pp.
953
960
.
11.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
, 2003, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
0021-9290,
36
(
3
), pp.
321
328
.
12.
Thelen
,
D. G.
, and
Anderson
,
F. C.
, 2006, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1107
1115
.
13.
Pandy
,
M. G.
, 2001, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
245
273
.
14.
Prilutsky
,
B. I.
,
Herzog
,
W.
, and
Allinger
,
T. L.
, 1997, “
Forces of Individual Cat Ankle Extensor Muscles During Locomotion Predicted Using Static Optimization
,”
J. Biomech.
0021-9290,
30
(
10
), pp.
1025
1033
.
15.
Menegaldo
,
L. L.
,
Fleury
,
A. T.
, and
Weber
,
H. I.
, 2003, “
Biomechanical Modeling and Optimal Control of Human Posture
,”
J. Biomech.
0021-9290,
36
(
11
), pp.
1701
1712
.
16.
Herzog
,
W.
, and
Leonard
,
T. R.
, 1991, “
Validation of Optimization Models That Estimate the Forces Exerted by Synergistic Muscles
,”
J. Biomech.
0021-9290,
24
(
1
), pp.
31
39
.
17.
Hincapie
,
J. G.
,
Blana
,
D.
,
Chadwick
,
E. K.
, and
Kirsch
,
R. F.
, 2008, “
Musculoskeletal Model-Guided, Customizable Selection of Shoulder and Elbow Muscles for a C5 SCI Neuroprosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
16
(
3
), pp.
255
263
.
18.
Kobetic
,
R.
,
Triolo
,
R. J.
, and
Marsolais
,
E. B.
, 1997, “
Muscle Selection and Walking Performance of Multichannel FES Systems for Ambulation in Paraplegia
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
5
(
1
), pp.
23
29
.
19.
Chanaud
,
C. M.
,
Pratt
,
C. A.
, and
Loeb
,
G. E.
, 1991, “
Functionally Complex Muscles of the Cat Hindlimb. II. Mechanical and Architectural Heterogenity Within the Biceps Femoris
,”
Exp. Brain Res.
0014-4819,
85
(
2
), pp.
257
270
.
20.
English
,
A. W.
, and
Weeks
,
O. I.
, 1987, “
An Anatomical and Functional Analysis of Cat Biceps Femoris and Semitendinosus Muscles
,”
J. Morphol.
0362-2525,
191
(
2
), pp.
161
175
.
21.
Peters
,
S. E.
, and
Rick
,
C.
, 1977, “
The Actions of Three Hamstring Muscles of the Cat: A Mechanical Analysis
,”
J. Morphol.
0362-2525,
152
(
3
), pp.
315
327
.
22.
Pratt
,
C. A.
, and
Loeb
,
G. E.
, 1991, “
Functionally Complex Muscles of the Cat Hindlimb. I. Patterns of Activation Across Sartorius
,”
Exp. Brain Res.
0014-4819,
85
(
2
), pp.
243
256
.
23.
English
,
A. W.
, 1984, “
An Electromyographic Analysis of Compartments in Cat Lateral Gastrocnemius Muscle During Unrestrained Locomotion
,”
J. Neurophysiol.
0022-3077,
52
(
1
), pp.
114
125
.
24.
Carrasco
,
D. I.
, and
English
,
A. W.
, 1999, “
Mechanical Actions of Compartments of the Cat Hamstring Muscle, Biceps Femoris
,”
Prog. Brain Res.
0079-6123,
123
, pp.
397
403
.
25.
Goslow
,
G. E.
, Jr.
,
Reinking
,
R. M.
, and
Stuart
,
D. G.
, 1973, “
The Cat Step Cycle: Hind Limb Joint Angles and Muscle Lengths During Unrestrained Locomotion
,”
J. Morphol.
0362-2525,
141
(
1
), pp.
1
41
.
26.
Burkholder
,
T. J.
, and
Nichols
,
T. R.
, 2004, “
Three-Dimensional Model of the Feline Hindlimb
,”
J. Morphol.
0362-2525,
261
(
1
), pp.
118
129
.
27.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
, 1990, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
0018-9294,
37
(
8
), pp.
757
767
.
28.
Delp
,
S. L.
,
Hess
,
W. E.
,
Hungerford
,
D. S.
, and
Jones
,
L. C.
, 1999, “
Variation of Rotation Moment Arms With Hip Flexion
,”
J. Biomech.
0021-9290,
32
(
5
), pp.
493
501
.
29.
Blemker
,
S. S.
, and
Delp
,
S. L.
, 2006, “
Rectus Femoris and Vastus Intermedius Fiber Excursions Predicted by Three-Dimensional Muscle Models
,”
J. Biomech.
0021-9290,
39
(
8
), pp.
1383
1391
.
30.
Crouch
,
J.
, 1969,
Text-Atlas of Cat Anatomy
,
Lea and Febiger
,
Philadelphia
.
31.
Delp
,
S. L.
, and
Loan
,
J. P.
, 1995, “
A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,”
Comput. Biol. Med.
0010-4825,
25
(
1
), pp.
21
34
.
32.
Boyd
,
S. K.
, and
Ronsky
,
J. L.
, 1997, “
Instantaneous Moment Arm Determination of the Cat Knee
,”
J. Biomech.
0021-9290,
31
(
3
), pp.
279
283
.
33.
Young
,
R. P.
,
Scott
,
S. H.
, and
Loeb
,
G. E.
, 1992, “
An Intrinsic Mechanism to Stabilize Posture–Joint-Angle-Dependent Moment Arms of the Feline Ankle Muscles
,”
Neurosci. Lett.
0304-3940,
145
(
2
), pp.
137
140
.
34.
Young
,
R. P.
,
Scott
,
S. H.
, and
Loeb
,
G. E.
, 1993, “
The Distal Hindlimb Musculature of The Cat: Multiaxis Moment Arms at the Ankle Joint
,”
Exp. Brain Res.
0014-4819,
96
(
1
), pp.
141
151
.
35.
MacFadden
,
L. N.
, and
Brown
,
N. A. T.
, 2007, “
Biarticular Hip Extensor and Knee Flexor Muscle Moment Arms of the Feline Hindlimb
,”
J. Biomech.
0021-9290,
40
(
15
), pp.
3448
3457
.
36.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
(
4
), pp.
359
411
.
37.
Sacks
,
R. D.
, and
Roy
,
R. R.
, 1982, “
Architecture of the Hind Limb Muscles of Cats: Functional Significance
,”
J. Morphol.
0362-2525,
173
(
2
), pp.
185
195
.
38.
Roy
,
R. R.
,
Kim
,
J. A.
,
Monti
,
R. J.
,
Zhong
,
H.
, and
Edgerton
,
V. R.
, 1997, “
Architectural and Histochemical Properties of Cat Hip ‘Cuff’ Muscles
,”
Acta Anat. (Basel)
0001-5180,
159
(
2–3
), pp.
136
146
.
39.
Korkmaz
,
L.
, 2004,
Static Force Production Analysis in a 3D Musculoskeletal Model of the Cat Hindlimb
,
Georgia Institute of Technology
,
Atlanta
.
40.
Gareis
,
H.
,
Solomonow
,
M.
,
Baratta
,
R.
,
Best
,
R.
, and
D’Ambrosia
,
R.
, 1992, “
The Isometric Length-Force Models of Nine Different Skeletal Muscles
,”
J. Biomech.
0021-9290,
25
(
8
), pp.
903
916
.
41.
O’Donovan
,
M. J.
,
Pinter
,
M. J.
,
Dum
,
R. P.
, and
Burke
,
R. E.
, 1982, “
Actions of FDL and FHL Muscles in Intact Cats: Functional Dissociation Between Anatomical Synergists
,”
J. Neurophysiol.
0022-3077,
47
(
6
), pp.
1126
1143
.
42.
Scott
,
S. H.
,
Thomson
,
D. B.
,
Richmond
,
F. J.
, and
Loeb
,
G. E.
, 1992, “
Neuromuscular Organization of Feline Anterior Sartorius: II. Intramuscular Length Changes and Complex Length-Tension Relationships During Stimulation of Individual Nerve Branches
,”
J. Morphol.
0362-2525,
213
(
2
), pp.
171
183
.
43.
Walmsley
,
B.
,
Hodgson
,
J. A.
, and
Burke
,
R. E.
, 1978, “
Forces Produced by Medial Gastrocnemius and Soleus Muscles During Locomotion in Freely Moving Cats
,”
J. Neurophysiol.
0022-3077,
41
(
5
), pp.
1203
1216
.
44.
Herzog
,
W.
,
Leonard
,
T. R.
,
Renaud
,
J. M.
,
Wallace
,
J.
,
Chaki
,
G.
, and
Bornemisza
,
S.
, 1992, “
Force-Length Properties and Functional Demands of Cat Gastrocnemius, Soleus and Plantaris Muscles
,”
J. Biomech.
0021-9290,
25
(
11
), pp.
1329
1335
.
45.
Lawrence
,
J. H.
, III
,
Nichols
,
T. R.
, and
English
,
A. W.
, 1993, “
Cat Hindlimb Muscles Exert Substantial Torques Outside the Sagittal Plane
,”
J. Neurophysiol.
0022-3077,
69
(
1
), pp.
282
285
.
46.
Schmidt-Nielsen
,
K.
, 1984,
Scaling: Why It Is So Important
,
Cambridge University Press
,
Cambridge, UK
, p.
13
.
47.
Blemker
,
S. S.
,
Pinsky
,
P. M.
, and
Delp
,
S. L.
, 2005, “
A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
657
665
.
48.
Zajac
,
F. E.
,
Zomlefer
,
M. R.
, and
Levine
,
W. S.
, 1981, “
Hindlimb Muscular Activity, Kinetics and Kinematics of Cats Jumping to Their Maximum Achievable Heights
,”
J. Exp. Biol.
0022-0949,
91
, pp.
73
86
.
49.
Hill
,
A. V.
, 1938, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B
0962-8452,
126
, pp.
136
195
.
50.
Fenn
,
W. O.
, and
Marsh
,
B. S.
, 1935, “
Muscular Force at Different Speeds of Shortening
,”
J. Physiol.
0022-3751,
85
(
3
), pp.
277
297
.
51.
West
,
S. P.
,
Roy
,
R. R.
, and
Edgerton
,
V. R.
, 1986, “
Fiber Type and Fiber Size of Cat Ankle, Knee, and Hip Extensors and Flexors Following Low Thoracic Spinal Cord Transection at an Early Age
,”
Exp. Neurol.
0014-4886,
91
(
1
), pp.
174
182
.
52.
Rick
,
C. L.
, 1974,
A Motor Unit Profile of Three Hamstring Muscles
,
Northern Arizona University
,
Arizona
.
53.
Ariano
,
M. A.
,
Armstrong
,
R. B.
, and
Edgerton
,
V. R.
, 1973, “
Hindlimb Muscle Fiber Populations of Five Mammals
,”
J. Histochem. Cytochem.
0022-1554,
21
(
1
), pp.
51
55
.
54.
Chanaud
,
C. M.
,
Pratt
,
C. A.
, and
Loeb
,
G. E.
, 1991, “
Functionally Complex Muscles of the Cat Hindlimb. V. The roles of Histochemical Fiber-Type Regionalization and Mechanical Heterogeneity in Differential Muscle Activation
,”
Exp. Brain Res.
0014-4819,
85
(
2
), pp.
300
313
.
55.
Goodwin
,
A.
,
Bing-He
,
Z.
,
Baratta
,
R. V.
,
Solomonow
,
M.
, and
Keegan
,
A. P.
, 1997, “
The influence of Antagonist Muscle Control Strategies on the Isometric Frequency Response of the Cat’s Ankle Joint
,”
IEEE Trans. Biomed. Eng.
0018-9294,
44
(
7
), pp.
634
639
.
56.
Doorenbosch
,
C. A.
,
Harlaar
,
J.
,
Roebroeck
,
M. E.
, and
Lankhorst
,
G. J.
, 1994, “
Two Strategies of Transferring From Sit-to-Stand; The Activation of Monoarticular and Biarticular Muscles
,”
J. Biomech.
0021-9290,
27
(
11
), pp.
1299
1307
.
57.
Gregor
,
R. J.
,
Smith
,
D. W.
, and
Prilutsky
,
B. I.
, 2006, “
Mechanics of Slope Walking in the Cat: Quantification of Muscle Load, Length Change, and Ankle Extensor EMG Patterns
,”
J. Neurophysiol.
0022-3077,
95
(
3
), pp.
1397
1409
.
58.
Smith
,
J. L.
,
Carlson-Kuhta
,
P.
, and
Trank
,
T. V.
, 1998, “
Forms of Forward Quadrupedal Locomotion. III. A Comparison of Posture, Hindlimb Kinematics, and Motor Patterns for Downslope and level Walking
,”
J. Neurophysiol.
0022-3077,
79
(
4
), pp.
1702
1716
.
59.
Huijing
,
P. A.
,
Baan
,
G. C.
, and
Rebel
,
G. T.
, 1998, “
Non-Myotendinous Force Transmission in Rat Extensor Digitorum Longus Muscle
,”
J. Exp. Biol.
0022-0949,
201
(
Pt 5
), pp.
683
691
.
60.
Troiani
,
D.
,
Filippi
,
G. M.
, and
Bassi
,
F. A.
, 1999, “
Nonlinear Tension Summation of Different Combinations of Motor Units in the Anesthetized Cat Peroneus Longus Muscle
,”
J. Neurophysiol.
0022-3077,
81
(
2
), pp.
771
780
.
61.
Delp
,
S. L.
, and
Loan
,
J. P.
, 2000, “
A Computational Framework for Simulating and Analyzing Human and Animal Movement
,”
Comput. Sci. Eng.
1521-9615,
2
(
5
), pp.
46
55
.
62.
Sandercock
,
T. G.
, and
Maas
,
H.
, 2009, “
Force Summation Between Muscles: Are Muscles Independent Actuators?
,”
Med. Sci. Sports Exercise
0195-9131,
41
(
1
), pp.
184
190
.
63.
Sandercock
,
T. G.
, 2005, “
Summation of Motor Unit Force in Passive and Active Muscle
,”
Exerc Sport Sci. Rev.
0091-6331,
33
(
2
), pp.
76
83
.
64.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2001, “
Static and Dynamic Optimization Solutions for Gait Are Practically Equivalent
,”
J. Biomech.
0021-9290,
34
(
2
), pp.
153
161
.
65.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2001, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
381
390
.
66.
Jezernik
,
S.
, 2004, “
Design of Multiple Degree-of-Freedom Sliding Mode FES Controller for Concurrent Stimulation of Multiple Mono and Biarticulate Muscles
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
1557-170X,
6
, pp.
4630
4632
.
67.
Jezernik
,
S.
,
Wassink
,
R. G. V.
, and
Keller
,
T.
, 2004, “
Sliding Mode Closed-Loop Control of FES Controlling the Shank Movement
,”
IEEE Trans. Biomed.
,
51
(
2
), pp.
263
272
.
68.
Hincapie
,
J. G.
, and
Kirsch
,
R. F.
, 2009, “
Feasibility of EMG-Based Neural Network Controller for an Upper Extremity Neuroprosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
17
(
1
), pp.
80
90
.
69.
Trank
,
T. V.
, and
Smith
,
J. L.
, 1996, “
Adaptive Control for Backward Quadrupedal Walking VI. Metatarsophalangeal Joint Dynamics and Motor Patterns of Digit Muscles
,”
J. Neurophysiol.
0022-3077,
75
(
2
), pp.
678
679
.
70.
Trank
,
T. V.
,
Chen
,
C.
, and
Smith
,
J. L.
, 1996, “
Forms of Forward Quadrupedal Locomotion. I. A Comparison of Posture, Hindlimb Kinematics, and Motor Patterns for Normal and Crouched Walking
,”
J. Neurophysiol.
0022-3077,
76
(
4
), pp.
2316
2326
.
You do not currently have access to this content.