Interest in developing durable mitral valve repair methods is growing, underscoring the need to better understand the native mitral valve mechanics. In this study, the authors investigate the dynamic deformation of the mitral valve strut chordae-to-anterior leaflet transition zone using a novel stretch mapping method and report the complex mechanics of this region for the first time. Eight structurally normal porcine mitral valves were studied in a pulsatile left heart simulator under physiological hemodynamic conditions −120 mm peak transvalvular pressure, 5 l/min cardiac output at 70 bpm. The chordal insertion region was marked with a structured array of 31 miniature markers, and their motions throughout the cardiac cycle were tracked using two high speed cameras. 3D marker coordinates were calculated using direct linear transformation, and a second order continuous surface was fit to the marker cloud at each time frame. Average areal stretch, principal stretch magnitudes and directions, and stretch rates were computed, and temporal changes in each parameter were mapped over the insertion region. Stretch distribution was heterogeneous over the entire strut chordae insertion region, with the highest magnitudes along the edges of the chordal insertion region and the least along the axis of the strut chordae. At early systole, radial stretch was predominant, but by mid systole, significant stretch was observed in both radial and circumferential directions. The compressive stretches measured during systole indicate a strong coupling between the two principal directions, explaining the small magnitude of the systolic areal stretch. This study for the first time provides the dynamic kinematics of the strut chordae insertion region in the functioning mitral valve. A heterogeneous stretch pattern was measured, with the mechanics of this region governed by the complex underlying collagen architecture. The insertion region seemed to be under stretch during both systole and diastole, indicating a transfer of forces from the leaflets to the chordae and vice versa throughout the cardiac cycle, and demonstrating its role in optimal valve function.

1.
Nielsen
,
S. L.
,
Hansen
,
S. B.
,
Nielsen
,
K. O.
,
Nygaard
,
H.
,
Paulsen
,
P. K.
, and
Hasenkam
,
J. M.
, 2005, “
Imbalanced Chordal Force Distribution Causes Acute Ischemic Mitral Regurgitation: Mechanistic Insights From Chordae Tendineae Force Measurements in Pigs
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
129
(
3
), pp.
525
531
.
2.
Nielsen
,
S. L.
,
Nygaard
,
H.
,
Fontaine
,
A. A.
,
Hasenkam
,
J. M.
,
He
,
S.
,
Andersen
,
N. T.
, and
Yoganathan
,
A. P.
, 1999, “
Chordal Force Distribution Determines Systolic Mitral Leaflet Configuration and Severity of Functional Mitral Regurgitation
,”
J. Am. Coll. Cardiol.
0735-1097,
33
(
3
), pp.
843
853
.
3.
Espino
,
D. M.
,
Shepherd
,
D. E.
,
Hukins
,
D. W.
, and
Buchan
,
K. G.
, 2005, “
The Role Of Chordae Tendineae in Mitral Valve Competence
,”
J. Heart Valve Dis.
0966-8519,
14
(
5
), pp.
603
609
.
4.
Jimenez
,
J. H.
,
Soerensen
,
D. D.
,
He
,
Z.
,
He
,
S.
, and
Yoganathan
,
A. P.
, 2003, “
Effects of a Saddle Shaped Annulus on Mitral Valve Function and Chordal Force Distribution: An In Vitro Study
,”
Ann. Biomed. Eng.
0090-6964,
31
(
10
), pp.
1171
1181
.
5.
Chen
,
L.
,
Yin
,
F. C.
, and
May-Newman
,
K.
, 2004, “
The Structure and Mechanical Properties of the Mitral Valve Leaflet-Strut Chordae Transition Zone
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
244
251
.
6.
Sacks
,
M. S.
,
Enomoto
,
Y.
,
Graybill
,
J. R.
,
Merryman
,
W. D.
,
Zeeshan
,
A.
,
Yoganathan
,
A. P.
,
Levy
,
R. J.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, III
, 2006, “
In-Vivo Dynamic Deformation of the Mitral Valve Anterior Leaflet
,”
Ann. Thorac. Surg.
0003-4975,
82
(
4
), pp.
1369
1377
.
7.
Sacks
,
M. S.
,
He
,
Z.
,
Baijens
,
L.
,
Wanant
,
S.
,
Shah
,
P.
,
Sugimoto
,
H.
, and
Yoganathan
,
A. P.
, 2002, “
Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve
,”
Ann. Biomed. Eng.
0090-6964,
30
(
10
), pp.
1281
1290
.
8.
He
,
Z.
,
Ritchie
,
J.
,
Grashow
,
J. S.
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
, 2005, “
In Vitro Dynamic Strain Behavior of the Mitral Valve Posterior Leaflet
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
3
), pp.
504
11
.
9.
Smith
,
D. B.
,
Sacks
,
M. S.
,
Vorp
,
D. A.
, and
Thornton
,
M.
, 2000, “
Surface Geometric Analysis of Anatomic Structures Using Biquintic Finite Element Interpolation
,”
Ann. Biomed. Eng.
0090-6964,
28
(
6
), pp.
598
611
.
10.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1997, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
0090-6964,
25
(
4
), pp.
678
689
.
11.
Ritchie
,
J.
,
Jimenez
,
J.
,
He
,
Z.
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
, 2006, “
The Material Properties of the Native Porcine Mitral Valve Chordae Tendineae: An In Vitro Investigation
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1129
1135
.
12.
Sacks
,
M. S.
,
Merryman
,
W. D.
, and
Schmidt
,
E. E.
, 2009, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
0021-9290,
42
(
12
), pp.
1804
1824
.
13.
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
, 2007, “
Heart Valve Function: A Biomechanical Perspective
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
362
(
1484
), pp.
1369
1392
.
14.
Goetz
,
W. A.
,
Lim
,
H. -S.
,
Pekar
,
F.
,
Saber
,
H. A.
,
Weber
,
P. A.
,
Lansac
,
E.
,
Birnbaum
,
D. E.
, and
Duran
,
C. M. G.
, 2003, “
Anterior Mitral Leaflet Mobility Is Limited by the Basal Stay Chords
,”
Circulation
0009-7322,
107
, pp.
2969
2974
.
You do not currently have access to this content.