Insufficient lateralization of the femoral component coupled with exposed reamed cancellous bone has been speculated to predispose to femoral neck fracture. The current study examined the effect of mediolateral implant position and exposed cancellous bone on the strength of the resurfaced proximal femur. Composite femurs were prepared in three configurations: (1) partial, with the implant placed at the native femoral head offset of the femur, partially exposing reamed cancellous bone; (2) proud, with a medialized implant exposing a circumferential ring of cancellous bone; and (3) complete, with a lateralized implant covering all reamed cancellous bone. Specimens were loaded to failure in axial compression. A finite element model was used to further explore the effect of exposed cancellous bone, cement mantle thickness, and relative valgus orientation on the strain distributions in the resurfaced femur. The proud group (2063 N) was significantly weaker than both the partial (2974 N, p=0.004) and complete groups (5899 N, p=0.001) when tested to failure. The partial group was also significantly weaker than the complete group when tested to failure (p=0.001). The finite element model demonstrated increasing levels of strain in the superior reamed cortical-cancellous bone interface with increasing degree of exposed cancellous bone. The condition of the femoral component medialized as the result of a thick cement mantle had the greatest detrimental impact on strain level in the superior reamed cancellous bone while a valgus oriented implant provided a protective effect. This study provides biomechanical evidence that exposed reamed cancellous bone significantly reduces the load-to-failure and increases maximum strains in the resurfaced proximal femur. The perceived benefit of reconstructing the femur to its native geometry may inherently weaken the proximal femur and increase femoral neck fracture risk if the femoral component is not sufficiently lateralized to cover all unsupported reamed cancellous bone. Relative valgus orientation of the implant may help to minimize the risk of neck fracture if reamed cancellous bone remains exposed following implant impaction.

1.
Amstutz
,
H. C.
,
Ball
,
S. T.
,
Le Duff
,
M. J.
, and
Dorey
,
F. J.
, 2007, “
Resurfacing THA for Patients Younger Than 50 Year: Results of 2- to 9-Year Followup
,”
Clin. Orthop. Relat. Res.
0009-921X,
460
, pp.
159
164
.
2.
Daniel
,
J.
,
Pynsent
,
P. B.
, and
McMinn
,
D. J.
, 2004, “
Metal-on-Metal Resurfacing of the Hip in Patients Under the Age of 55 Years With Osteoarthritis
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
86-B
(
2
), pp.
177
184
.
3.
De Smet
,
K. A.
, 2005, “
Belgium Experience With Metal-on-Metal Surface Arthroplasty
,”
Orthop. Clin. North Am.
0030-5898,
36
(
2
), pp.
203
213
.
4.
Hing
,
C. B.
,
Back
,
D. L.
,
Bailey
,
M.
,
Young
,
D. A.
,
Dalziel
,
R. E.
, and
Shimmin
,
A. J.
, 2007, “
The Results of Primary Birmingham Hip Resurfacings at a Mean of Five Years. An Independent Prospective Review of the First 230 Hips
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
89-B
(
11
), pp.
1431
1438
.
5.
McBryde
,
C. W.
,
Revell
,
M. P.
,
Thomas
,
A. M.
,
Treacy
,
R. B.
, and
Pynsent
,
P. B.
, 2008, “
The Influence of Surgical Approach on Outcome in Birmingham Hip Resurfacing
,”
Clin. Orthop. Relat. Res.
0009-921X,
466
(
4
), pp.
920
926
.
6.
McMinn
,
D.
, and
Daniel
,
J.
, 2006, “
History and Modern Concepts in Surface Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
239
251
.
7.
Steffen
,
R. T.
,
Pandit
,
H. P.
,
Palan
,
J.
,
Beard
,
D. J.
,
Gundle
,
R.
,
McLardy-Smith
,
P.
,
Murray
,
D. W.
, and
Gill
,
H. S.
, 2008, “
The Five-Year Results of the Birmingham Hip Resurfacing Arthroplasty: An Independent Series
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
90
(
4
), pp.
436
441
.
8.
Treacy
,
R. B.
,
McBryde
,
C. W.
, and
Pynsent
,
P. B.
, 2005, “
Birmingham Hip Resurfacing Arthroplasty. A Minimum Follow-Up of Five Years
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
2
), pp.
167
170
.
9.
Amstutz
,
H. C.
,
Campbell
,
P. A.
, and
Le Duff
,
M. J.
, 2004, “
Fracture of the Neck of the Femur After Surface Arthroplasty of the Hip
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86-A
(
9
), pp.
1874
1877
.
10.
Amstutz
,
H. C.
,
Beaulé
,
P. E.
,
Dorey
,
F. J.
,
Le Duff
,
M. J.
,
Campbell
,
P. A.
, and
Gruen
,
T. A.
, 2004, “
Metal-on-Metal Hybrid Surface Arthroplasty: Two to Six-Year Follow-Up Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86-A
(
1
), pp.
28
39
.
11.
Cossey
,
A. J.
,
Back
,
D. L.
,
Shimmin
,
A.
,
Young
,
D.
, and
Spriggins
,
A. J.
, 2005, “
The Nonoperative Management of Periprosthetic Fractures Associated With the Birmingham Hip Resurfacing Procedure
,”
J. Arthroplasty
0883-5403,
20
(
3
), pp.
358
361
.
12.
Marker
,
D. R.
,
Seyler
,
T. M.
,
Jinnah
,
R. H.
,
Delanois
,
R. E.
,
Ulrich
,
S. D.
, and
Mont
,
M. A.
, 2007, “
Femoral Neck Fractures After Metal-on-Metal Total Hip Resurfacing: A Prospective Cohort Study
,”
J. Arthroplasty
0883-5403,
22
(
7
), pp.
66
71
.
13.
Shimmin
,
A. J.
, and
Back
,
D.
, 2005, “
Femoral Neck Fractures Following Birmingham Hip Resurfacing: A National Review of 50 Cases
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
4
), pp.
463
464
.
14.
Siebel
,
T.
,
Maubach
,
S.
, and
Morlock
,
M. M.
, 2006, “
Lessons Learned From Early Clinical Experience and Results of 300 ASR Hip Resurfacing Implantations
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
345
353
.
15.
Australian Orthopaedic Association
, 2007, National Joint Replacement Registry.
16.
Beaulé
,
P. E.
,
Lee
,
J. L.
,
Le Duff
,
M. J.
,
Amstutz
,
H C.
, and
Ebramzadeh
,
E.
, 2004, “
Orientation of the Femoral Component in Surface Arthroplasty of the Hip. A Biomechanical and Clinical Analysis
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86–A
(
9
), pp.
2015
2021
.
17.
Freeman
,
M. A.
, 1978, “
Total Surface Replacement Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
134
, pp.
2
4
.
18.
Girard
,
J.
,
Lavigne
,
M.
,
Vendittoli
,
P. A.
, and
Roy
,
A. G.
, 2006, “
Biomechanical Reconstruction of the Hip: A Randomised Study Comparing Total Hip Resurfacing and Total Hip Arthroplasty
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
88-B
(
6
), pp.
721
726
.
19.
Loughead
,
J. M.
,
Chesney
,
D.
,
Holland
,
J. P.
, and
McCaskie
,
A. W.
, 2005, “
Comparison of Offset in Birmingham Hip Resurfacing and Hybrid Total Hip Arthroplasty
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
2
), pp.
163
166
.
20.
Silva
,
M.
,
Lee
,
K. H.
,
Heisel
,
C.
,
Dela Rosa
,
M. A.
, and
Schmalzried
,
T. P.
, 2004, “
The Biomechanical Results of Total Hip Resurfacing Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86-A
(
1
), pp.
40
46
.
21.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
, 1996, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
525
535
.
22.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2001, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
0021-9290,
34
(
6
), pp.
773
781
.
23.
Duda
,
G. N.
,
Heller
,
M.
,
Albinger
,
J.
,
Schulz
,
O.
,
Schneider
,
E.
, and
Claes
,
L.
, 1998, “
Influence of Muscle Forces on Femoral Strain Distribution
,”
J. Biomech.
0021-9290,
31
(
9
), pp.
841
846
.
24.
Heller
,
M. O.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Durselen
,
L.
,
Pohl
,
M.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2001, “
Musculo-Skeletal Loading Conditions at the Hip During Walking and Stair Climbing
,”
J. Biomech.
0021-9290,
34
(
7
), pp.
883
893
.
25.
2007, Thirdgen.zip, Available From the Biomechanics European Laboratory Finite Element Mesh Repository, http://www.tecno.ior.it/VRLAB/researchers/repository/BEL_repository.htmlhttp://www.tecno.ior.it/VRLAB/researchers/repository/BEL_repository.html.
26.
Cheung
,
G.
,
Zalzal
,
P.
,
Bhandari
,
M.
,
Spelt
,
J. K.
, and
Papini
,
M.
, 2004, “
Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading
,”
Med. Eng. Phys.
1350-4533,
26
(
2
), pp.
93
108
.
27.
Zalzal
,
P.
,
Backstein
,
D.
,
Gross
,
A. E.
, and
Papini
,
M.
, 2006, “
Notching of the Anterior Femoral Cortex During Total Knee Arthroplasty Characteristics That Increase Local Stresses
,”
J. Arthroplasty
0883-5403,
21
(
5
), pp.
737
743
.
28.
Davis
,
E. T.
,
Olsen
,
M.
,
Zdero
,
R.
,
Papini
,
M.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2009, “
A Biomechanical and Finite Element Analysis of Femoral Neck Notching During Hip Resurfacing
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
4
), p.
041002
.
29.
Morlock
,
M. M.
,
Bishop
,
N.
,
Ruther
,
W.
,
Delling
,
G.
, and
Hahn
,
M.
, 2006, “
Biomechanical, Morphological, and Histological Analysis of Early Failures in Hip Resurfacing Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
333
344
.
30.
Radcliffe
,
I. A.
, and
Taylor
,
M.
, 2007, “
Investigation into the Affect of Cementing Techniques on Load Transfer in the Resurfaced Femoral Head: A Multi-Femur Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
4
), pp.
422
430
.
31.
Viceconti
,
M.
, 2000, “
A Comparative Study on Different Methods of Automatic Mesh Generation of Human Femurs. Medical Engineering and Physics 20 (1998): 1–10
,”
Med. Eng. Phys.
1350-4533,
22
(
5
), pp.
379
380
.
32.
Long
,
J. P.
, and
Bartel
,
D. L.
, 2006, “
Surgical Variables Affect the Mechanics of a Hip Resurfacing System
,”
Clin. Orthop. Relat. Res.
0009-921X,
453
, pp.
115
122
.
33.
Ong
,
K. L.
,
Kurtz
,
S. M.
,
Manley
,
M. T.
,
Rushton
,
N.
,
Mohammed
,
N. A.
, and
Field
,
R. E.
, 2006, “
Biomechanics of the Birmingham Hip Resurfacing Arthroplasty
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
88-B
(
8
), pp.
1110
1115
.
34.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
0021-9290,
26
(
8
), pp.
969
990
.
35.
Taylor
,
M.
, 2006, “
Finite Element Analysis of the Resurfaced Femoral Head
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
289
297
.
36.
Watanabe
,
Y.
,
Shiba
,
N.
,
Matsuo
,
S.
,
Higuchi
,
F.
,
Tagawa
,
Y.
, and
Inoue
,
A.
, 2000, “
Biomechanical Study of the Resurfacing Hip Arthroplasty: Finite Element Analysis of the Femoral Component
,”
J. Arthroplasty
0883-5403,
15
(
4
), pp.
505
511
.
37.
McNamara
,
B. P.
,
Cristofolini
,
L.
,
Toni
,
A.
, and
Taylor
,
D.
, 1994, “
Evaluation of Experimental and Finite Element Models of Synthetic and Cadaveric Femora for Pre-Clinical Design-Analysis
,”
Clin. Mater.
,
17
(
3
), pp.
131
140
.
38.
Gupta
,
S.
,
New
,
A. M.
, and
Taylor
,
M.
, 2006, “
Bone Remodelling Inside a Cemented Resurfaced Femoral Head
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
(
6
), pp.
594
602
.
39.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
, 2001, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
0021-9290,
34
(
5
), pp.
569
577
.
40.
Chang
,
W. C.
,
Christensen
,
T. M.
,
Pinilla
,
T. P.
, and
Keaveny
,
T. M.
, 1999, “
Uniaxial Yield Strains for Bovine Trabecular Bone Are Isotropic and Asymmetric
,”
J. Orthop. Res.
0736-0266,
17
(
4
), pp.
582
585
.
41.
Davis
,
E. T.
,
Olsen
,
M.
,
Zdero
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2007,
Femoral Component Alignment and the Risk of Femoral Neck Fracture Following Hip Resurfacing
,
American Academy of Orthopaedic Surgeons
,
San Diego, CA
.
42.
Markolf
,
K. L.
, and
Amstutz
,
H. C.
, 1980, “
Mechanical Strength of the Femur Following Resurfacing and Conventional Total Hip Replacement Procedures
,”
Clin. Orthop. Relat. Res.
0009-921X,
147
, pp.
170
180
.
43.
Anglin
,
C.
,
Masri
,
B. A.
,
Tonetti
,
J.
,
Hodgson
,
A. J.
, and
Greidanus
,
N. V.
, 2007, “
Hip Resurfacing Femoral Neck Fracture Influenced by Valgus Placement
,”
Clin. Orthop. Relat. Res.
0009-921X,
2007
, pp.
71
79
.
44.
Beaule
,
P. E.
,
Campbell
,
P. A.
,
Hoke
,
R.
, and
Dorey
,
F.
, 2006, “
Notching of the Femoral Neck During Resurfacing Arthroplasty of the Hip: a Vascular Study
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
88-B
(
1
), pp.
35
39
.
45.
Beaule
,
P. E.
,
Campbell
,
P.
, and
Shim
,
P.
, 2007, “
Femoral Head Blood Flow During Hip Resurfacing
,”
Clin. Orthop. Relat. Res.
0009-921X,
456
, pp.
148
152
.
46.
Steffen
,
R.
,
O’Rourke
,
K.
,
Gill
,
H. S.
, and
Murray
,
D. W.
, 2007, “
The Anterolateral Approach Leads to Less Disruption of the Femoral Head-Neck Blood Supply Than the Posterior Approach During Hip Resurfacing
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
89-B
(
10
), pp.
1293
1298
.
47.
Radcliffe
,
I. A.
, and
Taylor
,
M.
, 2007, “
Investigation into the Effect of Varus-Valgus Orientation on Load Transfer in the Resurfaced Femoral Head: a Multi-Femur Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
7
), pp.
780
786
.
48.
Papini
,
M.
,
Zdero
,
R.
,
Schemitsch
,
E. H.
, and
Zalzal
,
P.
, 2007, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
1
), pp.
12
19
.
49.
Taylor
,
M. E.
,
Tanner
,
K. E.
,
Freeman
,
M. A.
, and
Yettram
,
A. L.
, 1996, “
Stress and Strain Distribution Within the Intact Femur: Compression or Bending?
,”
Med. Eng. Phys.
1350-4533,
18
(
2
), pp.
122
131
.
You do not currently have access to this content.