This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Rethroat) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Rethroat=500) and turbulent flow conditions (Rethroat3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of 10% at most of the locations. However, for the transitional flow case (Rethroat=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to 60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to 15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.

1.
Pinotti
,
M.
, and
Rosa
,
E. S.
, 1995, “
Computational Prediction of Hemolysis in a Centrifugal Ventricular Assist Device
,”
Artif. Organs
0160-564X,
19
(
3
), pp.
267
273
.
2.
Grigioni
,
M.
,
Daniele
,
C.
,
D’Avenio
,
G.
, and
Barbaro
,
V. A.
, 1999, “
Discussion on the Threshold Limit for Hemolysis Related to Reynolds Shear Stress
,”
J. Biomech.
0021-9290,
32
, pp.
1107
1112
.
3.
Burgreen
,
G. W.
,
Antaki
,
J. F.
,
Wu
,
Z. J.
, and
Holmes
,
A. J.
, 2001, “
Computational Fluid Dynamics as a Development Tool for Rotary Blood Pumps
,”
Artif. Organs
0160-564X,
25
(
5
), pp.
336
340
.
4.
De Wachter
,
D.
, and
Verdonck
,
P.
, 2002, “
Numerical Calculation of Hemolysis Levels in Peripheral Hemodialysis Cannulas
,”
Artif. Organs
0160-564X,
26
(
7
), pp.
576
582
.
5.
Yano
,
T.
,
Sekine
,
K.
,
Mitoh
,
A.
,
Mitamura
,
Y.
,
Okamoto
,
E.
,
Kim
,
D. W.
,
Nishimura
,
I.
,
Murabayashi
,
S.
, and
Yozu
,
R.
, 2003, “
An Estimation Method of Hemolysis Within an Axial Flow Blood Pump by Computational Fluid Dynamics Analysis
,”
Artif. Organs
0160-564X,
27
(
10
), pp.
920
925
.
6.
Arvand
,
A.
,
Hormes
,
M.
, and
Reul
,
H.
, 2005, “
A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump
,”
Artif. Organs
0160-564X,
29
(
7
), pp.
531
540
.
7.
Behbahani
,
M.
,
Behr
,
M.
,
Hormes
,
M.
,
Steinseifer
,
U.
,
Arora
,
D.
,
Coronado
,
O.
, and
Pasquali
,
M.
, 2009, “
A Review of Computational Fluid Dynamics Analysis of Blood Pumps
,”
Eur. J. Appl. Math.
0956-7925,
20
(
04
), pp.
363
397
.
8.
Wootton
,
D. M.
,
Markou
,
C. P.
,
Hanson
,
S. R.
, and
Ku
,
D. N.
, 2001, “
A Mechanistic Model of Acute Platelet Accumulation in Thrombogenic Stenoses
,”
Ann. Biomed. Eng.
0090-6964,
29
(
4
), pp.
321
329
.
9.
Goodman
,
P. D.
,
Barlow
,
E. T.
,
Crapo
,
P. M.
,
Mohammad
,
S. F.
, and
Solen
,
K. A.
, 2005, “
Computational Model of Device-Induced Thrombosis and Thromboembolism
,”
Ann. Biomed. Eng.
0090-6964,
33
(
6
), pp.
780
797
.
10.
Sorensen
,
E. N.
,
Burgreen
,
G. W.
,
Wagner
,
W. R.
, and
Antaki
,
J. F.
, 1999, “
Computational Simulation of Platelet Deposition and Activation: I. Model Development and Properties
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
436
448
.
11.
Fallon
,
A. M.
,
Dasi
,
L. P.
,
Marzec
,
U. M.
,
Hanson
,
S. R.
, and
Yoganathan
,
A. P.
, 2008, “
Procoagulant Properties of Flow Fields in Stenotic and Expansive Orifices
,”
Ann. Biomed. Eng.
0090-6964,
36
(
1
), pp.
1
13
.
12.
Tamagawa
,
M.
,
Kaneda
,
H.
,
Hiramoto
,
M.
, and
Nagahama
,
S.
, 2009, “
Simulation of Thrombus Formation in Shear Flows Using Lattice Boltzmann Method
,”
Artif. Organs
0160-564X,
33
(
8
), pp.
604
610
.
13.
Richardson
,
E.
, 1975, “
Applications of a Theoretical Model for Haemolysis in Shear Flow
,”
Biorheology
0006-355X,
12
(
1
), pp.
27
37
.
14.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
, 1990, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
0391-3988,
13
(
5
), pp.
300
306
.
15.
Bludszuweit
,
C.
, 1995, “
Model for a General Mechanical Blood Damage Prediction
,”
Artif. Organs
0160-564X,
19
(
7
), pp.
583
589
.
16.
Gu
,
L.
, and
Smith
,
W.
, 2005, “
Evaluation of Computational Models for Hemolysis Estimation
,”
ASAIO J.
0162-1432,
51
(
3
), pp.
202
207
.
17.
Hentschel
,
B.
,
Tedjo
,
I.
,
Probst
,
M.
,
Wolter
,
M.
,
Behr
,
M.
,
Bischof
,
C.
, and
Kuhlen
,
T.
, 2008, “
Interactive Blood Damage Analysis for Ventricular Assist Devices
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
14
(
6
), pp.
1515
1522
.
19.
Stewart
,
S. F. C.
,
Day
,
S.
,
Burgreen
,
G. W.
,
Paterson
,
E. G.
,
Manning
,
K. B.
,
Hariharan
,
P.
,
Deutsch
,
S.
,
Giarra
,
M.
,
Cheek
,
C.
,
Reddy
,
V.
,
Berman
,
M.
,
Myers
,
M. R.
, and
Malinauskas
,
R. A.
, 2009, “
Preliminary Results of FDA’s ‘Critical Path’ Project to Validate Computational Fluid Dynamic Methods Used in Medical Device Evaluation
,”
ASAIO J.
0162-1432,
55
(
2
), p.
173
.
20.
Browne
,
P.
,
Ramuzat
,
A.
,
Saxena
,
R.
, and
Yoganathan
,
A. P.
, 2000, “
Experimental Investigation of the Steady Flow Downstream of the St. Jude Bileaflet Heart Valve: A Comparison Between Laser Doppler Velocimetry and Particle Image Velocimetry Techniques
,”
Ann. Biomed. Eng.
0090-6964,
28
(
1
), pp.
39
47
.
21.
Kaminsky
,
R.
,
Morbiducci
,
U.
,
Rossi
,
M.
,
Scalise
,
L.
,
Verdonck
,
P.
, and
Grigioni
,
M.
, 2007, “
Time-Resolved PIV Technique for High Temporal Resolution Measurement of Mechanical Prosthetic Aortic Valve Fluid Dynamics
,”
Int. J. Artif. Organs
0391-3988,
30
(
2
), pp.
153
162
.
22.
Kaminsky
,
R.
,
Dumont
,
K.
,
Weber
,
H.
,
Schroll
,
M.
, and
Verdonck
,
P.
, 2007, “
PIV Validation of Blood-Heart Valve Leaflet Interaction Modelling
,”
Int. J. Artif. Organs
0391-3988,
30
(
7
), pp.
640
648
.
23.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2003, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
0160-564X,
27
(
9
), pp.
840
846
.
24.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
, 2001, “
Pulsatile Flow Studies of a Porcine Bioprosthetic Aortic Valve In Vitro: PIV Measurements and Shear-Induced Blood Damage
,”
J. Biomech.
0021-9290,
34
, pp.
1417
1427
.
25.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2008, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
0090-6964,
36
(
2
), pp.
276
297
.
26.
Engelmayr
,
G. C.
, Jr.
,
Soletti
,
L.
,
Vigmostad
,
S. C.
,
Budilarto
,
S. G.
,
Federspiel
,
W. J.
,
Chandran
,
K. B.
,
Vorp
,
D. A.
, and
Sacks
,
M. S.
, 2008, “
A Novel Flex-Stretch-Flow Bioreactor for the Study of Engineered Heart Valve Tissue Mechanobiology
,”
Ann. Biomed. Eng.
0090-6964,
36
(
5
), pp.
700
712
.
27.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004, “
Wall Shear-Rate Estimation Within the 50cc Penn State Artificial Heart Using Particle Image Velocimetry
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
430
437
.
28.
Deutsch
,
S.
,
Tarbell
,
J. M.
,
Manning
,
K. B.
,
Rosenberg
,
G.
, and
Fontaine
,
A. A.
, 2006, “
Experimental Fluid Mechanics of Pulsatile Artificial Blood Pumps
,”
Annu. Rev. Fluid Mech.
0066-4189,
38
, pp.
65
86
.
29.
Day
,
S. W.
, and
McDaniel
,
J. C.
, 2005, “
PIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
244
253
.
30.
Day
,
S. W.
, and
McDaniel
,
J. C.
, 2005, “
PIV Measurements of Flow in a Centrifugal Blood Pump: Time-Varying Flow
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
254
263
.
31.
Shu
,
F.
,
Vandenberghe
,
S.
, and
Antaki
,
J. F.
, 2009, “
The Importance of dQ/dt on the Flow Field in a Turbodynamic Pump With Pulsatile Flow
,”
Artif. Organs
0160-564X,
33
(
9
), pp.
757
762
.
32.
Lee
,
H.
,
Tatsumi
,
E.
, and
Taenaka
,
Y.
, 2009, “
Experimental Study on the Reynolds and Viscous Shear Stress of Bileaflet Mechanical Heart Valves in a Pneumatic Ventricular Assist Device
,”
ASAIO J.
0162-1432,
55
(
4
), pp.
348
354
.
33.
Medvitz
,
R. B.
,
Reddy
,
V.
,
Deutsch
,
S.
,
Manning
,
K. B.
, and
Paterson
,
E. G.
, 2009, “
Validation of a CFD Methodology for Positive Displacement LVAD Analysis Using PIV Data
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
11
), p.
111009
.
34.
Cooper
,
B. T.
,
Roszelle
,
B. N.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
, 2010, “
The Influence of Operational Protocol on the Fluid Dynamics in the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device: The Effect of End-Diastolic Delay
,”
Artif. Organs
0160-564X,
34
(
4
), pp.
E122
E133
.
35.
Benard
,
N.
,
Coisne
,
D.
,
Donal
,
E.
, and
Perrault
,
R.
, 2003, “
Experimental Study of Laminar Blood Flow Through an Artery Treated by a Stent Implantation: Characterisation of Intra-Stent Wall Shear Stress
,”
J. Biomech.
0021-9290,
36
, pp.
991
998
.
36.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S.
, and
Vlachos
,
P.
, 2009, “
In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress
,”
Ann. Biomed. Eng.
0090-6964,
37
(
7
), pp.
1310
1321
.
37.
Stanislas
,
K.
,
Okamoto
,
K.
,
Kahler
,
C. J.
,
Westerweel
,
J.
, and
Scarano
,
F.
, 2008, “
Main Results of the Third International Challenge
,”
Exp. Fluids
0723-4864,
45
, pp.
27
71
.
38.
Umezu
,
M.
,
Fujimasu
,
H.
,
Yamada
,
T.
,
Fujimoto
,
T.
,
Ranawake
,
M.
,
Nogawa
,
A.
, and
Kijima
,
T.
, 1996, “
Fluid Dynamic Investigation of Mechanical Blood Hemolysis
,”
Proceedings of the Fifth International Symposium on Artificial Heart and Assist Devices
, pp.
327
335
.
39.
Hinds
,
M. T.
,
Park
,
Y. J.
,
Jones
,
S. A.
,
Giddens
,
D. P.
, and
Alevriadou
,
B. R.
, 2001, “
Local Hemodynamics Affect Monocytic Cell Adhesion to a Three-Dimensional Flow Model Coated With E-Selectin
,”
J. Biomech.
0021-9290,
34
(
1
), pp.
95
103
.
40.
Worth Longest
,
P.
, and
Kleinstreuer
,
C.
, 2003, “
Comparison of Blood Particle Deposition Models for Non-Parallel Flow Domains
,”
J. Biomech.
0021-9290,
36
(
3
), pp.
421
430
.
41.
Kameneva
,
M. V.
,
Burgreen
,
G. W.
,
Kono
,
K.
,
Repko
,
B.
,
Antaki
,
J. F.
, and
Umezu
,
M.
, 2004, “
Effects of Turbulent Stresses Upon Mechanical Hemolysis: Experimental and Computational Analysis
,”
ASAIO J.
0162-1432,
50
, pp.
418
423
.
42.
Lacasse
,
D.
,
Garon
,
A.
, and
Pelletier
,
D.
, 2007, “
Mechanical Hemolysis in Blood Flow: User-Independent Predictions With the Solution of a Partial Differential Equation
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
10
(
1
), pp.
1
12
.
43.
Prasad
,
A. K.
, 2000, “
Particle Image Velocimetry
,”
Curr. Sci.
0011-3891,
79
(
1
), pp.
51
60
.
44.
Westerweel
,
J.
, 1993, “
Digital Particle Image Velocimetry, Theory and Application
,” Ph.D. thesis, Delft University Press, Delft, The Netherlands.
45.
Westerweel
,
J.
, 1997, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1379
1392
.
46.
LaVision Inc.
, 2008, DAVIS FLOWMASTER Software Manual.
47.
Keane
,
R. D.
, and
Adrian
,
R. J.
, 1992, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
0003-6994,
49
, pp.
191
215
.
48.
Huang
,
H.
,
Dabiri
,
D.
, and
Gharib
,
M.
, 1997, “
On Errors of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1427
1440
.
49.
Christensen
,
K. T.
, 2004, “
The Influence of Peak-Locking Errors on Turbulence Statistics Computed From PIV Ensembles
,”
Exp. Fluids
0723-4864,
36
, pp.
484
497
.
50.
Nobach
,
H.
, and
Bodenschatz
,
E.
, 2009, “
Limitations of Accuracy in PIV Due to Individual Variations of Particle Image Intensities
,”
Exp. Fluids
0723-4864,
47
, pp.
27
38
.
51.
Hariharan
,
P.
,
Myers
,
M. R.
,
Robinson
,
R. A.
,
Maruvada
,
S. H.
,
Sliwa
,
J.
, and
Banerjee
,
R. K.
, 2008, “
Characterization of High Intensity Focused Ultrasound Transducers Using Acoustic Streaming
,”
J. Acoust. Soc. Am.
0001-4966,
123
(
3
), pp.
1706
1719
.
52.
Zhou
,
M.
, and
Garner
,
C. P.
, 1996, “
Particle Image Velocimetry Measurements of the Flow Field Within an Enclosed Rotating Disc-Stator System and Comparison With Computational Fluid Dynamics Results
,”
Optical Diagnostics in Engineering
1364-4173,
1
(
2
), pp.
9
21
.
53.
Adrian
,
R. J.
, 1997, “
Dynamic Ranges of Velocity and Spatial Resolution of Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1393
1398
.
54.
Nigen
,
S.
,
El Kissi
,
N.
,
Piau
,
J. M.
, and
Sadun
,
S.
, 2003, “
Velocity Field for Polymer Melts Extrusion Using Particle Image Velocimetry Stable and Unstable Flow Regimes
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
112
, pp.
177
202
.
55.
Wernet
,
M. P.
,
Subramanian
,
A.
,
Mu
,
H.
, and
Kadambi
,
J. R.
, 2000, “
Comparison of Particle Image Velocimetry and Laser Doppler Anemometry Measurements in Turbulent Fluid Flow
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
1393
1394
.
56.
Hinze
,
J. O.
, 1975,
Turbulence
, 2nd ed.,
McGraw-Hill
,
New York
.
57.
Gach
,
M. H.
, and
Lowe
,
I. J.
, 2000, “
Measuring Flow Reattachment Lengths Downstream of a Stenosis Using MRI
,”
J. Magn. Reson Imaging
1053-1807,
12
, pp.
939
948
.
58.
Pak
,
B.
,
Cho
,
Y. I.
, and
Choi
,
S. U. S.
, 1990, “
Separation and Reattachment of Non-Newtonian Fluid Flows in a Sudden Expansion Pipe
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
37
, pp.
175
199
.
59.
Cantwell
,
C. D.
,
Barkley
,
D.
, and
Blackburn
,
H. M.
2010, “
Transient Growth Analysis of Flow Through a Sudden Expansion in a Circular Pipe
,”
Phys. Fluids
1070-6631,
22
, p.
034101
.
60.
Mehrez
,
Z.
,
Bouterra
,
M.
,
Cafsi
,
A. E.
,
Belghith
,
A.
, and
Le Quere
,
P.
, 2009, “
The Influence of the Periodic Disturbance on the Local Heat Transfer in Separated and Reattached Flow
,”
Heat Mass Transfer
0947-7411,
46
, pp.
107
112
.
61.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schönung
,
B.
, 1983, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
0022-1120,
127
, pp.
473
496
.
62.
Sreenivasan
,
K. R.
, 1983, “
Some Studies of Non-Simple Pipe Flows
,”
Trans. of the Institution of Engineers, Australia: Mech. Eng.
0727-7369,
8
, pp.
200
208
.
63.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
, 1997, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
0090-6964,
25
, pp.
344
356
.
64.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
, 1972, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
0006-3495,
12
, pp.
257
273
.
65.
Scarano
,
F.
, and
Riethmuller
,
M.
, 1999, “
Iterative Multigrid Approach in PIV Image Processing With Discrete Window Offset
,”
Exp. Fluids
0723-4864,
26
, pp.
513
523
.
You do not currently have access to this content.