The purpose of this study is to validate numerical simulations of flow and pressure in an abdominal aortic aneurysm (AAA) using phase-contrast magnetic resonance imaging (PCMRI) and an in vitro phantom under physiological flow and pressure conditions. We constructed a two-outlet physical flow phantom based on patient imaging data of an AAA and developed a physical Windkessel model to use as outlet boundary conditions. We then acquired PCMRI data in the phantom while it operated under conditions mimicking a resting and a light exercise physiological state. Next, we performed in silico numerical simulations and compared experimentally measured velocities, flows, and pressures in the in vitro phantom to those computed in the in silico simulations. There was a high degree of agreement in all of the pressure and flow waveform shapes and magnitudes between the experimental measurements and simulated results. The average pressures and flow split difference between experiment and simulation were all within 2%. Velocity patterns showed good agreement between experimental measurements and simulated results, especially in the case of whole-cycle averaged comparisons. We demonstrated methods to perform in vitro phantom experiments with physiological flows and pressures, showing good agreement between numerically simulated and experimentally measured velocity fields and pressure waveforms in a complex patient-specific AAA geometry.

1.
Taylor
,
C.
, and
Steinman
,
D.
, 2008, “
Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions
,”
Ann. Biomed. Eng.
0090-6964,
38
(
3
), pp.
1188
1203
.
2.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
0962-8452,
177
(
1046
), pp.
109
133
.
3.
Glagov
,
S.
,
Zarins
,
C.
,
Giddens
,
D. P.
, and
Ku
,
D. N.
, 1988, “
Hemodynamics and Atherosclerosis. Insights and Perspectives Gained From Studies of Human Arteries
,”
Arch. Pathol. Lab Med.
0003-9985,
112
(
10
), pp.
1018
1031
.
4.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
(
3
), pp.
293
302
.
5.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
(
21
), pp.
2035
2042
.
6.
Langille
,
B. L.
,
Bendeck
,
M. P.
, and
Keeley
,
F. W.
, 1989, “
Adaptations of Carotid Arteries of Young and Mature Rabbits to Reduced Carotid Blood Flow
,”
Am. J. Physiol.
0002-9513,
256
(
4
), pp.
H931
H939
.
7.
Wolinsky
,
H.
, and
Glagov
,
S.
, 1967, “
A Lamellar Unit of Aortic Medial Structure and Function in Mammals
,”
Circ. Res.
0009-7330,
20
(
1
), pp.
99
111
.
8.
Jou
,
L.-D.
,
Quick
,
C. M.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Higashida
,
R.
,
Martin
,
A.
, and
Saloner
,
D.
, 2003, “
Computational Approach to Quantifying Hemodynamic Forces in Giant Cerebral Aneurysms
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
(
9
), pp.
1804
1810
.
9.
Laganà
,
K.
,
Balossino
,
R.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Bove
,
E. L.
,
de Leval
,
M. R.
, and
Dubini
,
G.
, 2005, “
Multiscale Modeling of the Cardiovascular System: Application to the Study of Pulmonary and Coronary Perfusions in the Univentricular Circulation
,”
J. Biomech.
0021-9290,
38
(
5
), pp.
1129
1141
.
10.
Tang
,
B. T.
,
Cheng
,
C. P.
,
Draney
,
M. T.
,
Wilson
,
N. M.
,
Tsao
,
P. S.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, 2006, “
Abdominal Aortic Hemodynamics in Young Healthy Adults at Rest and During Lower Limb Exercise: Quantification Using Image-Based Computer Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
291
(
2
), pp.
H668
H676
.
11.
Taylor
,
C. A.
,
Hughes
,
T. J.
, and
Zarins
,
C. K.
, 1998, “
Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis
,”
Ann. Biomed. Eng.
0090-6964,
26
(
6
), pp.
975
987
.
12.
Wentzel
,
J. J.
,
Gijsen
,
F. J. H.
,
Schuurbiers
,
J. C. H.
,
Krams
,
R.
,
Serruys
,
P. W.
,
De Feyter
,
P. J.
, and
Slager
,
C. J.
, 2005, “
Geometry Guided Data Averaging Enables the Interpretation of Shear Stress Related Plaque Development in Human Coronary Arteries
,”
J. Biomech.
0021-9290,
38
(
7
), pp.
1551
1555
.
13.
Anderson
,
J.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Olsen
,
D. B.
, 2000, “
Numerical Analysis of Blood Flow in the Clearance Regions of a Continuous Flow Artificial Heart Pump
,”
Artif. Organs
0160-564X,
24
(
6
), pp.
492
500
.
14.
Benard
,
N.
,
Perrault
,
R.
, and
Coisne
,
D.
, 2004, “
Blood Flow in Stented Coronary Artery: Numerical Fluid Dynamics Analysis
,”
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEMBS '04
, pp.
3800
3803
.
15.
Cebral
,
J. R.
, and
Lohner
,
R.
, 2005, “
Efficient Simulation of Blood Flow Past Complex Endovascular Devices Using an Adaptive Embedding Technique
,”
IEEE Trans. Med. Imaging
0278-0062,
24
(
4
), pp.
468
476
.
16.
Li
,
Z.
, and
Kleinstreuer
,
C.
, 2005, “
Blood Flow and Structure Interactions in a Stented Abdominal Aortic Aneurysm Model
,”
Med. Eng. Phys.
1350-4533,
27
(
5
), pp.
369
382
.
17.
Migliavacca
,
F.
,
Balossino
,
R.
,
Pennati
,
G.
,
Dubini
,
G.
,
Hsia
,
T. -Y.
,
de Leval
,
M. R.
, and
Bove
,
E. L.
, 2006, “
Multiscale Modelling in Biofluidynamics: Application to Reconstructive Paediatric Cardiac Surgery
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1010
1020
.
18.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
, 1999, “
Predictive Medicine: Computational Techniques in Therapeutic Decision-Making
,”
Comput. Aided Surg.
1092-9088,
4
(
5
), pp.
231
247
.
19.
Hope
,
T.
,
Markl
,
M.
,
Wigström
,
L.
,
Alley
,
M.
,
Miller
,
D.
, and
Herfkens
,
R.
, 2007, “
Comparison of Flow Patterns in Ascending Aortic Aneurysms and Volunteers Using Four Dimensional Magnetic Resonance Velocity Mapping
,”
J. Magn. Reson Imaging
1053-1807,
26
(
6
), pp.
1471
1479
.
20.
Markl
,
M.
,
Draney
,
M. T.
,
Miller
,
D. C.
,
Levin
,
J. M.
,
Williamson
,
E. E.
,
Pelc
,
N. J.
,
Liang
,
D. H.
, and
Herfkens
,
R. J.
, 2005, “
Time-Resolved Three-Dimensional Magnetic Resonance Velocity Mapping of Aortic Flow in Healthy Volunteers and Patients After Valve-Sparing Aortic Root Replacement
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
130
(
2
), pp.
456
463
.
21.
Acevedo-Bolton
,
G.
,
Jou
,
L.-D.
,
Dispensa
,
B. P.
,
Lawton
,
M. T.
,
Higashida
,
R. T.
,
Martin
,
A. J.
,
Young
,
W. L.
, and
Saloner
,
D.
, 2006, “
Estimating the Hemodynamic Impact of Interventional Treatments of Aneurysms: Numerical Simulation With Experimental Validation: Technical Case Report
,”
Neurosurgery
0148-396X,
59
(
2
), pp.
E429
E430
.
22.
Hoi
,
Y.
,
Woodward
,
S. H.
,
Kim
,
M.
,
Taulbee
,
D. B.
, and
Meng
,
H.
, 2006, “
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
6
), pp.
844
851
.
23.
Frauenfelder
,
T.
,
Lotfey
,
M.
,
Boehm
,
T.
, and
Wildermuth
,
S.
, 2006, “
Computational Fluid Dynamics: Hemodynamic Changes in Abdominal Aortic Aneurysm After Stent-Graft Implantation
,”
Cardiovasc. Intervent Radiol.
0174-1551,
29
(
4
), pp.
613
623
.
24.
Wang
,
C.
,
Pekkan
,
K.
,
de Zélicourt
,
D.
,
Horner
,
M.
,
Parihar
,
A.
,
Kulkarni
,
A.
, and
Yoganathan
,
A. P.
, 2007, “
Progress in the CFD Modeling of Flow Instabilities in Anatomical Total Cavopulmonary Connections
,”
Ann. Biomed. Eng.
0090-6964,
35
(
11
), pp.
1840
1856
.
25.
Ford
,
M. D.
,
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
DeMont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
, 2008, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
2
), p.
021015
.
26.
Marshall
,
I.
,
Zhao
,
S.
,
Papathanasopoulou
,
P.
,
Hoskins
,
P.
, and
Xu
,
Y.
, 2004, “
MRI and CFD Studies of Pulsatile Flow in Healthy and Stenosed Carotid Bifurcation Models
,”
J. Biomech.
0021-9290,
37
(
5
), pp.
679
687
.
27.
Salsac
,
A.
,
Sparks
,
S.
, and
Lasheras
,
J.
, 2004, “
Hemodynamic Changes Occurring During the Progressive Enlargement of Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
0890-5096,
18
(
1
), pp.
14
21
.
28.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
, 2010, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
0090-6964,
38
(
4
), pp.
1288
1313
.
29.
Olufsen
,
M. S.
, 2000, “
A One-Dimensional Fluid Dynamic Model of the Systemic Arteries
,”
Stud. Health Technol. Inform.
0926-9630,
71
, pp.
79
97
.
30.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
29–32
), pp.
3776
3796
.
31.
Grant
,
B. J.
, and
Paradowski
,
L. J.
, 1987, “
Characterization of Pulmonary Arterial Input Impedance With Lumped Parameter Models
,”
Am. J. Physiol.
0002-9513,
252
(
3
), pp.
H585
H593
.
32.
Elkins
,
C. J.
,
Markl
,
M.
,
Iyengar
,
A.
,
Wicker
,
R.
, and
Eaton
,
J. K.
, 2004, “
Full-Field Velocity and Temperature Measurements Using Magnetic Resonance Imaging in Turbulent Complex Internal Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
25
(
5
), pp.
702
710
.
33.
Kung
,
E.
, and
Taylor
,
C.
, 2010, “
Development of a Physical Windkessel Module to Re-Create In Vivo Vascular Flow Impedance for In Vitro Experiments
,”
Cardiovascular Engineering and Technology
,
2
(
1
), pp.
2
14
.
34.
Westerhof
,
N.
,
Elzinga
,
G.
, and
Sipkema
,
P.
, 1971, “
An Artificial Arterial System for Pumping Hearts
,”
J. Appl. Physiol.
0021-8987,
31
(
5
), pp.
776
781
.
35.
Bax
,
L.
,
Bakker
,
C. J.
,
Klein
,
W. M.
,
Blanken
,
N.
,
Beutler
,
J. J.
, and
Mali
,
W. P.
, 2005, “
Renal Blood Flow Measurements With Use of Phase-Contrast Magnetic Resonance Imaging: Normal Values and Reproducibility
,”
J. Vasc. Interv. Radiol.
1051-0443,
16
(
6
), pp.
807
814
.
36.
Ku
,
J. P.
,
Elkins
,
C. J.
, and
Taylor
,
C. A.
, 2005, “
Comparison of CFD and MRI Flow and Velocities in an In Vitro Large Artery Bypass Graft Model
,”
Ann. Biomed. Eng.
0090-6964,
33
(
3
), pp.
257
269
.
37.
Shankar
,
P.
, and
Kumar
,
M.
, 1994, “
Experimental Determination of the Kinematic Viscosity of Glycerol-Water Mixtures
,”
Proc. R. Soc. London, Ser. A
0950-1207,
444
(
1922
), pp.
573
581
.
38.
Kim
,
H. J.
,
Figueroa
,
C. A.
,
Hughes
,
T. J. R.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2009, “
Augmented Lagrangian Method for Constraining the Shape of Velocity Profiles at Outlet Boundaries for Three-Dimensional Finite Element Simulations of Blood Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
3551
3566
.
39.
Lotz
,
J.
,
Meier
,
C.
,
Leppert
,
A.
, and
Galanski
,
M.
, 2002, “
Cardiovascular Flow Measurement With Phase-Contrast MR Imaging: Basic Facts and Implementation
,”
Radiographics
0271-5333,
22
(
3
), pp.
651
671
.
40.
McCauley
,
T. R.
,
Pena
,
C. S.
,
Holland
,
C. K.
,
Price
,
T. B.
, and
Gore
,
J. C.
, 1995, “
Validation of Volume Flow Measurements With Cine Phase-Contrast MR Imaging for Peripheral Arterial Waveforms
,”
J. Magn. Reson Imaging
1053-1807,
5
(
6
), pp.
663
668
.
41.
Kilner
,
P. J.
,
Firmin
,
D. N.
,
Rees
,
R. S.
,
Martinez
,
J.
,
Pennell
,
D. J.
,
Mohiaddin
,
R. H.
,
Underwood
,
S. R.
, and
Longmore
,
D. B.
, 1991, “
Valve and Great Vessel Stenosis: Assessment With MR Jet Velocity Mapping
,”
Radiology
0033-8419,
178
(
1
), pp.
229
235
.
42.
Oshinski
,
J.
,
Ku
,
D.
, and
Pettigrew
,
R.
, 1995, “
Turbulent Fluctuation Velocity: The Most Significant Determinant of Signal Loss in Stenotic Vessels
,”
Magn. Reson. Med.
0740-3194,
33
(
2
), pp.
193
199
.
43.
Guyton
,
J. R.
, and
Hartley
,
C. J.
, 1985, “
Flow Restriction of One Carotid Artery in Juvenile Rats Inhibits Growth of Arterial Diameter
,”
Am. J. Physiol.
0002-9513,
248
(
4
), pp.
H540
H546
.
44.
Botnar
,
R.
,
Rappitsch
,
G.
,
Scheidegger
,
M. B.
,
Liepsch
,
D.
,
Perktold
,
K.
, and
Boesiger
,
P.
, 2000, “
Hemodynamics in the Carotid Artery Bifurcation: A Comparison Between Numerical Simulations and In Vitro MRI Measurements
,”
J. Biomech.
0021-9290,
33
(
2
), pp.
137
144
.
45.
Zhao
,
S. Z.
,
Papathanasopoulou
,
P.
,
Long
,
Q.
,
Marshall
,
I.
, and
Xu
,
X. Y.
, 2003, “
Comparative Study of Magnetic Resonance Imaging and Image-Based Computational Fluid Dynamics for Quantification of Pulsatile Flow in a Carotid Bifurcation Phantom
,”
Ann. Biomed. Eng.
0090-6964,
31
(
8
), pp.
962
971
.
46.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
, 2006, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
41–43
), pp.
5685
5706
.
You do not currently have access to this content.