Characterization of the biomaterial flow through porous bone is crucial for the success of the bone augmentation process in vertebroplasty. The biofluid, biomaterial, and local morphological bone characteristics determine the final shape of the filling, which is important both for the post-treatment mechanical loading and the risk of intraoperative extraosseous leakage. We have developed a computational model that describes the flow of biomaterials in porous bone structures by considering the material porosity, the region-dependent intrinsic permeability of the porous structure, the rheological properties of the biomaterial, and the boundary conditions of the filling process. To simulate the process of the substitution of a biofluid (bone marrow) by a biomaterial (bone cement), we developed a hybrid formulation to describe the evolution of the fluid boundary and properties and coupled it to a modified version of Darcy’s law. The apparent rheological properties are derived from a fluid-fluid interface tracking algorithm and a mixed boundary representation. The region- specific intrinsic permeability of the bone is governed by an empirical relationship resulting from a fitting process of experimental data. In a first step, we verified the model by studying the displacement process in spherical domains, where the spreading pattern is known in advance. The mixed boundary model demonstrated, as expected, that the determinants of the spreading pattern are the local intrinsic permeability of the porous matrix and the ratio of the viscosity of the fluids that are contributing to the displacement process. The simulations also illustrate the sensitivity of the mixed boundary representation to anisotropic permeability, which is related to the directional dependent microstructural properties of the porous medium. Furthermore, we compared the nonlinear finite element model to different published experimental studies and found a moderate to good agreement (R2=0.9895 for a one-dimensional bone core infiltration test and a 10.94–16.92% relative error for a three-dimensional spreading pattern study, respectively) between computational and experimental results.

1.
Burge
,
R.
,
Dawson-Hughes
,
B.
,
Solomon
,
D. H.
,
Wong
,
J. B.
,
King
,
A.
, and
Tosteson
,
A.
, 2007, “
Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025
,”
J. Bone Miner. Res.
0884-0431,
22
(
3
), pp.
465
475
.
2.
Lin
,
J. T.
, and
Lane
,
J. M.
, 2004, “
Osteoporosis: A Review
,”
Clin. Orthop. Relat. Res.
0009-921X,
425
, pp.
126
134
.
3.
Schütte
,
H. E.
, 1995, “
Social and Economic Impact of Osteoporosis. A Review of the Literature
,”
Eur. J. Radiol.
0720-048X,
20
(
3
), pp.
165
169
.
4.
Jensen
,
M. E.
,
Evans
,
A. J.
,
Mathis
,
J. M.
,
Kallmes
,
D. F.
,
Cloft
,
H. J.
, and
Dion
,
J. E.
, 1997, “
Percutaneous Polymethylmethacrylate Vertebroplasty in the Treatment of Osteoporotic Vertebral Body Compression Fractures: Technical Aspects
,”
AJNR Am. J. Neuroradiol.
0195-6108,
18
(
10
), pp.
1897
1904
.
5.
Choe
,
D. H.
,
Marom
,
E. M.
,
Ahrar
,
K.
,
Truong
,
M. T.
, and
Madewell
,
M. T.
, 2004, “
Pulmonary Embolism of Polymethyl Methacrylate During Percutaneous Vertebroplasty and Kyphoplasty
,”
AJR, Am. J. Roentgenol.
0361-803X,
183
(
4
), pp.
1097
1102
.
6.
Eck
,
J. C.
,
Nachtigall
,
D.
,
Humphreys
,
S. C.
, and
Hodges
,
S. D.
, 2008, “
Comparison of Vertebroplasty and Balloon Kyphoplasty for Treatment of Vertebral Compression Fractures: A Meta-Analysis of the Literature
,”
Spine J.
,
8
(
3
), pp.
488
497
.
7.
Togawa
,
D.
,
Kayanja
,
M. M.
, and
Lieberman
,
I. H.
, 2005, “
Percutaneous Vertebral Augmentation
,”
The Internet Journal of Spine Surgery
,
1
(
2
).
8.
Wasnich
,
R. D.
, 1996, “
Vertebral Fracture Epidemiology
,”
Bone
,
18
(
3
), pp.
S179
S183
.
9.
Silverman
,
S. L.
, 1992, “
The Clinical Consequences of Vertebral Compression Fracture
,”
Bone
,
13
(
2
), pp.
S27
S31
.
10.
Reginster
,
J. -Y.
, and
Burlet
,
N.
, 2006, “
Osteoporosis: A Still Increasing Prevalence
,”
Bone
,
38
(
2
), pp.
4
9
.
11.
Loeffel
,
M.
,
Heini
,
P. F.
,
Bouduban
,
N.
,
Burger
,
J.
,
Nolte
,
L. -P.
, and
Kowal
,
J.
, 2007, “
Development of a Computer-Assisted High-Pressure Injection Device for Vertebroplasty
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
11
), pp.
2051
2056
.
12.
Anselmetti
,
G. C.
,
Zoarski
,
G.
,
Manca
,
A.
,
Masala
,
S.
,
Eminefendic
,
H.
,
Russo
,
F.
, and
Regge
,
D.
, 2008, “
Percutaneous Vertebroplasty and Bone Cement Leakage: Clinical Experience With a New High-Viscosity Bone Cement and Delivery System for Vertebral Augmentation in Benign and Malignant Compression Fractures
,”
Cardiovasc. Intervent. Radiol.
,
31
(
5
), pp.
937
947
.
13.
Al-Assir
,
I.
,
Perez-Higueras
,
A.
,
Florensa
,
J.
,
Muñoz
,
A.
, and
Cuesta
,
E.
, 2000, “
Percutaneous Vertebroplasty: A Special Syringe for Cement Injection
,”
AJNR Am. J. Neuroradiol.
0195-6108,
21
(
1
), pp.
159
161
.
14.
Amar
,
A. P.
,
Larsen
,
D. W.
, and
Teitelbaum
,
G. P.
, 2003, “
Use of a Screw-Syringe Injector for Cement Delivery During Kyphoplasty: Technical Report
,”
Neurosurgery
0148-396X,
53
(
2
), pp.
380
383
.
15.
Bohner
,
M.
,
Gasser
,
B.
,
Baroud
,
G.
, and
Heini
,
P.
, 2003, “
Theoretical and Experimental Model to Describe the Injection of a Polymethylmethacrylate Cement Into a Porous Structure
,”
Biomaterials
0142-9612,
24
(
16
), pp.
2721
2730
.
16.
Mohamed
,
R.
,
Silbermann
,
C.
,
Ahmari
,
A.
,
Bohner
,
M.
,
Becker
,
S.
, and
Baroud
,
G.
, 2010, “
Cement Filling Control and Bone Marrow Removal in Vertebral Body Augmentation by Unipedicular Aspiration Technique: An Experimental Study Using Leakage Model
,”
Spine
0362-2436,
35
(
3
), pp.
353
360
.
17.
Baroud
,
G.
,
Crookshank
,
M.
, and
Bohner
,
M.
, 2006, “
High-Viscosity Cement Significantly Enhances Uniformity of Cement Filling in Vertebroplasty: An Experimental Model and Study on Cement Leakage
,”
Spine
0362-2436,
31
(
22
), pp.
2562
2568
.
18.
Loeffel
,
M.
,
Ferguson
,
S. J.
,
Nolte
,
L. -P.
, and
Kowal
,
J. H.
, 2008, “
Vertebroplasty: Experimental Characterization of Polymethylmethacrylate Bone Cement Spreading as a Function of Viscosity, Bone Porosity, and Flow Rate
,”
Spine
0362-2436,
33
(
12
), pp.
1352
1359
.
19.
Rey
,
R. M.
,
Paiement
,
G. D.
,
McGann
,
W. M.
,
Jasty
,
M.
,
Harrigan
,
T. P.
,
Burke
,
D. W.
, and
Harris
,
W. H.
, 1987, “
A Study of Intrusion Characteristics of Low Viscosity Cement Simplex-P and Palacos Cements in a Bovine Cancellous Bone Model
,”
Clin. Orthop. Relat. Res.
0009-921X,
215
, pp.
272
278
.
20.
Habib
,
M.
,
Serhan
,
H.
,
Marchek
,
C.
, and
Baroud
,
G.
, 2010, “
Cement Leakage and Filling Pattern Study of Low Viscous Vertebroplastic Versus High Viscous Confidence Cement
,”
SAS Journal
,
4
(
1
), pp.
26
33
.
21.
Sun
,
K.
, and
Liebschner
,
M. A. K.
, 2004, “
Biomechanics of Prophylactic Vertebral Reinforcement
,”
Spine
0362-2436,
29
(
13
), pp.
1428
1435
.
22.
Sun
,
K.
, and
Liebschner
,
M. A. K.
, 2004, “
Evolution of Vertebroplasty: A Biomechanical Perspective
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
77
91
.
23.
Frei
,
H.
,
Gadala
,
M. S.
,
Masri
,
B. A.
,
Duncan
,
C. P.
, and
Oxland
,
T. R.
, 2006, “
Cement Flow During Impaction Allografting: A Finite Element Analysis
,”
J. Biomech.
0021-9290,
39
(
3
), pp.
493
502
.
24.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
, 2003, “
Finite Element Models Predict In Vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
(
4
), pp.
744
750
.
25.
Chae
,
S. -W.
,
Kang
,
H. D.
,
Lee
,
M. K.
,
Lee
,
T. S.
, and
Park
,
J. -Y.
, 2010, “
The Effect of Vertebral Material Description During Vertebroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
224
(
1
), pp.
87
95
.
26.
Mirzaei
,
M.
,
Zeinali
,
A.
,
Razmjoo
,
A.
, and
Nazemi
,
M.
, 2009, “
On Prediction of the Strength Levels and Failure Patterns of Human Vertebrae Using Quantitative Computed Tomography (QCT)-Based Finite Element Method
,”
J. Biomech.
0021-9290,
42
(
11
), pp.
1584
1591
.
27.
Wijayathunga
,
V. N.
,
Jones
,
A. C.
,
Oakland
,
R. J.
,
Furtado
,
N. R.
,
Hall
,
R. M.
, and
Wilcox
,
R. K.
, 2008, “
Development of Specimen-Specific Finite Element Models of Human Vertebrae for the Analysis of Vertebroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
(
2
), pp.
221
228
.
28.
Whitlow
,
C. T.
,
Yazdani
,
S. K.
,
Reedy
,
M. L.
,
Kaminsky
,
S. E.
,
Berry
,
J. L.
, and
Morris
,
P. P.
, 2007, “
Investigating Sacroplasty: Technical Considerations and Finite Element Analysis of Polymethylmethacrylate Infusion Into Cadaveric Sacrum
,”
AJNR Am. J. Neuroradiol.
0195-6108,
28
(
6
), pp.
1036
1041
.
29.
Tschirhart
,
C. E.
,
Roth
,
S. E.
, and
Whyne
,
C. M.
, 2005, “
Biomechanical Assessment of Stability in the Metastatic Spine Following Percutaneous Vertebroplasty: Effects of Cement Distribution Patterns and Volume
,”
J. Biomech.
0021-9290,
38
(
8
), pp.
1582
1590
.
30.
Liebschner
,
M. A.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2001, “
Effects of Bone Cement Volume and Distribution on Vertebral Stiffness After Vertebroplasty
,”
Spine
0362-2436,
26
(
14
), pp.
1547
1554
.
31.
Chevalier
,
Y.
,
Pahr
,
D.
,
Charlebois
,
M.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
, 2008, “
Cement Distribution, Volume, and Compliance in Vertebroplasty: Some Answers From an Anatomy-Based Nonlinear Finite Element Study
,”
Spine
0362-2436,
33
(
16
), pp.
1722
1730
.
32.
Beaudoin
,
A. J.
,
Mihalko
,
W. M.
, and
Krause
,
W. R.
, 1991, “
Finite Element Modelling of Polymethylmethacrylate Flow Through Cancellous Bone
,”
J. Biomech.
0021-9290,
24
(
2
), pp.
127
136
.
33.
Lian
,
Z.
,
Chui
,
C. -K.
, and
Teoh
,
S. -H.
, 2008, “
A Biomechanical Model for Real-Time Simulation of PMMA Injection With Haptics
,”
Comput. Biol. Med.
0010-4825,
38
(
3
), pp.
304
312
.
34.
Zeiser
,
T.
,
Bashoor-Zadeh
,
M.
,
Darabi
,
A.
, and
Baroud
,
G.
, 2008, “
Pore-Scale Analysis of Newtonian Flow in the Explicit Geometry of Vertebral Trabecular Bones Using Lattice Boltzmann Simulation
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
(
2
), pp.
185
194
.
35.
Teo
,
J.
,
Wang
,
S. C.
, and
Teoh
,
S. H.
, 2007, “
Preliminary Study on Biomechanics of Vertebroplasty: A Computational Fluid Dynamics and Solid Mechanics Combined Approach
,”
Spine
0362-2436,
32
(
12
), pp.
1320
1328
.
36.
Baroud
,
G.
, and
Yahia
,
F. B.
, 2004, “
A Finite Element Rheological Model for Polymethylmethacrylate Flow: Analysis of the Cement Delivery in Vertebroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
218
(
5
), pp.
331
338
.
37.
Fisher
,
Q. J.
, and
Knipe
,
R. J.
, 2001, “
The Permeability of Faults Within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf
,”
Mar. Pet. Geol.
0264-8172,
18
(
10
), pp.
1063
1081
.
38.
Delerue
,
J. -F.
,
Lomov
,
S. V.
,
Parnas
,
R. S.
,
Verpoest
,
I.
, and
Wevers
,
M.
, 2003, “
Pore Network Modeling of Permeability for Textile Reinforcements
,”
Polym. Compos.
0272-8397,
24
(
3
), pp.
344
357
.
39.
Dillaman
,
R. M.
,
Roer
,
R. D.
, and
Gay
,
D. M.
, 1991, “
Fluid Movement in Bone: Theoretical and Empirical
,”
J. Biomech.
0021-9290,
24
(
1
), pp.
163
177
.
40.
Nauman
,
E. A.
,
Fong
,
K. E.
, and
Keaveny
,
T. M.
, 1999, “
Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site
,”
Ann. Biomed. Eng.
0090-6964,
27
(
4
), pp.
517
524
.
41.
Baroud
,
G.
,
Falk
,
R.
,
Crookshank
,
M.
,
Sponagel
,
S.
, and
Steffen
,
T.
, 2004, “
Experimental and Theoretical Investigation of Directional Permeability of Human Vertebral Cancellous Bone for Cement Infiltration
,”
J. Biomech.
0021-9290,
37
(
2
), pp.
189
196
.
42.
Ferguson
,
S. J.
,
Ito
,
K.
, and
Nolte
,
L. -P.
, 2004, “
Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc
,”
J. Biomech.
0021-9290,
37
(
2
), pp.
213
221
.
43.
Darcy
,
H.
, 1856,
Les fontaines publiques de la ville de Dijon
,
Dalmont
,
Paris
, Vol.
647
.
44.
Wyckoff
,
R.
,
Botset
,
H.
,
Muskat
,
M.
, and
Reed
,
D.
, 1933, “
The Measurement of the Permeability of Porous Media for Homogeneous Fluids
,”
Rev. Sci. Instrum.
0034-6748,
4
, pp.
394
405
.
45.
Bear
,
J.
, 1972,
Dynamics of Fluids in Porous Media
,
Elsevier
,
New York
.
46.
Baroud
,
G.
,
Falk
,
R.
,
Ferguson
,
S.
,
Heini
,
P.
, and
Steffen
,
T.
, 2002, “
Constitutive Model and Parameter Identification for the Cement Infiltration of Osteoporotic Bone
,”
Tenth Annual Symposium on Computational Methods in Orthopaedic Biomechanics
.
47.
Teo
,
J.
,
Si-Hoe
,
K.
,
Keh
,
J.
, and
Teoh
,
S.
, 2007, “
Correlation of Cancellous Bone Microarchitectural Parameters From MicroCT to CT Number and Bone Mechanical Properties
,”
Mater. Sci. Eng., C
0928-4931,
27
(
2
), pp.
333
339
.
48.
Nzihou
,
A.
,
Attias
,
L.
,
Sharrock
,
P.
, and
Ricard
,
A.
, 1998, “
A Rheological, Thermal and Mechanical Study of Bone Cement From a Suspension to a Solid Biomaterial
,”
Powder Technology
0032-5910,
99
(
1
), pp.
60
69
.
49.
Baroud
,
G.
,
Wu
,
J. Z.
,
Bohner
,
M.
,
Sponagel
,
S.
, and
Steffen
,
T.
, 2003, “
How to Determine the Permeability for Cement Infiltration of Osteoporotic Cancellous Bone
,”
Med. Eng. Phys.
1350-4533,
25
(
4
), pp.
283
288
.
50.
Pinder
,
G. F.
, and
Gray
,
W. G.
, 2008,
Essentials of Multiphase Flow and Transport in Porous Media
,
Wiley
,
New York
.
51.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
, 1995, “
A Fast Level Set Method for Propagating Interfaces
,”
J. Comput. Phys.
0021-9991,
118
(
2
), pp.
269
277
.
52.
Lin
,
C. -L.
,
Lee
,
H.
,
Lee
,
T.
, and
Weber
,
L. J.
, 2005, “
A Level Set Characteristic Galerkin Finite Element Method for Free Surface Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
49
(
5
), pp.
521
547
.
53.
Macklin
,
P.
, and
Lowengrub
,
J.
, 2005, “
Evolving Interfaces via Gradients of Geometry-Dependent Interior Poisson Problems: Application to Tumor Growth
,”
J. Comput. Phys.
0021-9991,
203
(
1
), pp.
191
220
.
54.
Shepel
,
S. V.
, and
Smith
,
B. L.
, 2006, “
New Finite-Element/Finite-Volume Level Set Formulation for Modelling Two-Phase Incompressible Flows
,”
J. Comput. Phys.
0021-9991,
218
(
2
), pp.
479
494
.
55.
Sussman
,
M.
,
Fatemi
,
E.
,
Smereka
,
P.
, and
Osher
,
S.
, 1998, “
An Improved Level Set Method for Incompressible Two-Phase Flows
,”
Comput. Fluids
0045-7930,
27
(
5–6
), pp.
663
680
.
56.
Shin
,
S.
, and
Juric
,
D.
, 2002, “
Modeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking Without Connectivity
,”
J. Comput. Phys.
0021-9991,
180
(
2
), pp.
427
470
.
57.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y. J.
, 2001, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
0021-9991,
169
(
2
), pp.
708
759
.
58.
Aulisa
,
E.
,
Manservisi
,
S.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
, 2007, “
Interface Reconstruction With Least-Squares Fit and Split Advection in Three-Dimensional Cartesian Geometry
,”
J. Comput. Phys.
0021-9991,
225
(
2
), pp.
2301
2319
.
59.
Gao
,
D.
, 1999, “
A Three-Dimensional Hybrid Finite Element-Volume Tracking Model for Mould Filling in Casting Processes
,”
Int. J. Numer. Methods Fluids
0271-2091,
29
(
7
), pp.
877
895
.
60.
Kirk
,
B.
,
Peterson
,
J.
,
Stogner
,
R.
, and
Carey
,
G.
, 2006, “
Libmesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
Eng. Comput.
0177-0667,
22
(
3–4
), pp.
237
254
.
61.
Capon
,
P. J.
, and
Jimack
,
P. K.
, 1997, “
An Inexact Newton Method for Systems Arising From the Finite Element Method
,”
Appl. Math. Lett.
0893-9659,
10
(
3
), pp.
9
12
.
62.
Knoll
,
D. A.
, and
Keyes
,
D. E.
, 2004, “
Jacobian-Free Newton-Krylov Methods: A Survey of Approaches and Applications
,”
J. Comput. Phys.
0021-9991,
193
(
2
), pp.
357
397
.
63.
Loeffel
,
M.
, 2007, “
Computer Assisted High Pressure Cement Injection in Spinal Interventions
,” Ph.D. thesis, University of Bern, Bern, Switzerland.
64.
Li
,
C.
,
Mason
,
J.
, and
Yakimicki
,
D.
, 2004, “
Thermal Characterization of PMMA-Based Bone Cement Curing
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
15
, pp.
85
89
.
65.
Arramon
,
Y. P.
, and
Nauman
,
E. A.
, 2001, “
The Intrinsic Permeability of Cancellous Bone
,”
Bone Mechanics Handbook
,
S.
Cowin
and
J.
Telega
, eds.,
CRC
,
Boca Raton, FL
, Chap. 25, pp.
25.1
25.17
.
66.
Grimm
,
M. J.
, and
Williams
,
J. L.
, 1997, “
Measurements of Permeability in Human Calcaneal Trabecular Bone
,”
J. Biomech.
0021-9290,
30
(
7
), pp.
743
745
.
67.
Martin
,
R.
, 1984, “
Porosity and Specific Surface of Bone
,”
Crit. Rev. Biomed. Eng.
0278-940X,
10
(
3
), pp.
179
222
.
68.
Luo
,
J.
,
Daines
,
L.
,
Charalambous
,
A.
,
Adams
,
M. A.
,
Annesley-Williams
,
D. J.
, and
Dolan
,
P.
, 2009, “
Vertebroplasty: Only Small Cement Volumes Are Required to Normalize Stress Distributions on the Vertebral Bodies
,”
Spine
0362-2436,
34
(
26
), pp.
2865
2873
.
69.
Gisep
,
A.
, and
Boger
,
A.
, 2009, “
Injection Biomechanics of In Vitro Simulated Vertebroplasty—Correlation of Injection Force and Cement Viscosity
,”
Biomed. Mater. Eng.
0959-2989,
19
(
6
), pp.
415
420
.
You do not currently have access to this content.