Reproduction of the in vivo motions of joints has become possible with improvements in robot technology and in vivo measuring techniques. A motion analysis system has been used to measure the motions of the tibia and femur of the ovine stifle joint during normal gait. These in vivo motions are then reproduced with a parallel robot. To ensure that the motion of the joint is accurately reproduced and that the resulting data are reliable, the testing frame, the data acquisition system, and the effects of limitations of the testing platform need to be considered. Of the latter, the stiffness of the robot and the ability of the control system to process sequential points on the path of motion in a timely fashion for repeatable path accuracy are of particular importance. Use of the system developed will lead to a better understanding of the mechanical environment of joints and ligaments in vivo.

1.
Fujie
,
H.
,
Mabuchi
,
K.
,
Woo
,
S. L.
,
Livesay
,
G. A.
,
Arai
,
S.
, and
Tsukamoto
,
Y.
, 1993, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
3
), pp.
211
217
.
2.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.
, 1996, “
Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
0021-9290,
29
(
12
), pp.
1577
1585
.
3.
Mabuchi
,
K.
, and
Fujie
,
H.
, 1996, “
Use of Robotics Technology to Measure Friction in Animal Joints
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
11
(
3
), pp.
121
125
.
4.
Woo
,
S. L.
,
Debski
,
R. E.
,
Wong
,
E. K.
,
Yagi
,
M.
, and
Tarinelli
,
D.
, 1999, “
Use of Robotic Technology for Diathrodial Joint Research
,”
J. Sci. Med. Sport
1440-2440,
2
(
4
), pp.
283
297
.
5.
Yao
,
J.
,
Salo
,
A. D.
,
Lee
,
J.
, and
Lerner
,
A. L.
, 2008, “
Sensitivity of Tibio-Menisco-Femoral Joint Contact Behavior to Variations in Knee Kinematics
,”
J. Biomech.
0021-9290,
41
(
2
), pp.
390
398
.
6.
Darcy
,
S. P.
,
Gil
,
J. E.
,
Woo
,
S. L.
, and
Debski
,
R. E.
, 2009, “
The Importance of Position and Path Repeatability on Force at the Knee During Six-DOF Joint Motion
,”
Med. Eng. Phys.
1350-4533,
31
(
5
), pp.
553
557
.
7.
Howard
,
R. A.
,
Rosvold
,
J. M.
,
Darcy
,
S. P.
,
Corr
,
D. T.
,
Shrive
,
N. G.
,
Tapper
,
J. E.
,
Ronsky
,
J. L.
,
Beveridge
,
J. E.
,
Marchuk
,
L. L.
, and
Frank
,
C. B.
, 2007, “
Reproduction of In Vivo Motion Using a Parallel Robot
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
743
749
.
8.
Darcy
,
S. P.
, 2009,
Robotic Reproduction of Joint Motion
,
University of Calgary
,
Calgary
.
9.
Rudy
,
T. W.
, 2001, Personal Communications on the Necessity of Truncating Joint Motions to Less Than 1 mm During External Loading of the Knee Joint, Pittsburgh,
S. P.
Darcy
, ed.
10.
Gil
,
J. E.
, 2003, “
Development of a Biomechanical Testing Platform for the Study of the Human Knee Joint
,” MS thesis, University of Pittsburgh, Pittsburgh.
11.
Howard
,
R. A.
, 2004, Development of a Method for Robotic Reproduction of In-Vivo Joint Motion, Microform, University of Calgary, Calgary.
12.
Abramowitch
,
S. D.
,
Gabriel
,
M. T.
,
Ma
,
C. B.
, and
Woo
,
S. L.-Y.
, 2003, “
Validating the Principle of Superposition as a Method to Determine In-Situ Forces in the Anterior Cruciate Ligament of the Goat
,” ORS.
13.
Woo
,
S. L.
,
Peterson
,
R. H.
,
Ohland
,
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
, 1990, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
0736-0266,
8
(
5
), pp.
712
721
.
14.
Noyes
,
F. R.
,
DeLucas
,
J. L.
, and
Torvik
,
P. J.
, 1974, “
Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain-Rate Sensitivity and Mechanisms of Failure in Primates
,”
J. Bone Joint Surgery, Am. Vol.
0021-9355,
56
(
2
), pp.
236
253
.
15.
Danto
,
M. I.
, and
Woo
,
S. L.
, 1993, “
The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates
,”
J. Orthop. Res.
0736-0266,
11
(
1
), pp.
58
67
.
16.
Beynnon
,
B. D.
, and
Fleming
,
B. C.
, 1998, “
Anterior Cruciate Ligament Strain In-Vivo: A Review of Previous Work
,”
J. Biomech.
0021-9290,
31
(
6
), pp.
519
525
.
17.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
, and
Leyvraz
,
P. F.
, 1999, “
Strain Rate Effect on the Mechanical Behavior of the Anterior Cruciate Ligament-Bone Complex
,”
Med. Eng. Phys.
1350-4533,
21
(
2
), pp.
95
100
.
18.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
, 2002, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
0021-9290,
35
(
7
), pp.
943
950
.
19.
Crisco
,
J. J.
,
Moore
,
D. C.
, and
McGovern
,
R. D.
, 2002, “
Strain-Rate Sensitivity of the Rabbit MCL Diminishes at Traumatic Loading Rates
,”
J. Biomech.
0021-9290,
35
(
10
), pp.
1379
1385
.
20.
Yamamoto
,
N.
, and
Hayashi
,
K.
, 1998, “
Mechanical Properties of Rabbit Patellar Tendon at High Strain Rate
,”
Biomed. Mater. Eng.
0959-2989,
8
(
2
), pp.
83
90
.
21.
Herrick
,
W. C.
,
Kingsbury
,
H. B.
, and
Lou
,
D. Y.
, 1978, “
A Study of the Normal Range of Strain, Strain Rate, and Stiffness of Tendon
,”
J. Biomed. Mater. Res.
0021-9304,
12
(
6
), pp.
877
894
.
22.
Woo
,
S. L.
,
Hollis
,
J. M.
,
Roux
,
R. D.
,
Gomez
,
M. A.
,
Inoue
,
M.
,
Kleiner
,
J. B.
, and
Akeson
,
W. H.
, 1987, “
Effects of Knee Flexion on the Structural Properties of the Rabbit Femur-Anterior Cruciate Ligament-Tibia Complex (FATC)
,”
J. Biomech.
0021-9290,
20
(
6
), pp.
557
563
.
23.
Lewis
,
G.
, and
Shaw
,
K. M.
, 1997, “
Tensile Properties of Human Tendo Achillis: Effect of Donor Age and Strain Rate
,”
J. Foot Ankle Surg.
1067-2516,
36
(
6
), pp.
435
445
.
You do not currently have access to this content.