Tissue engineering offers an interesting alternative to current anterior cruciate ligament (ACL) surgeries. Indeed, a tissue-engineered solution could ideally overcome the long-term complications due to actual ACL reconstruction by being gradually replaced by biological tissue. Key requirements concerning the ideal scaffold for ligament tissue engineering are numerous and concern its mechanical properties, biochemical nature, and morphology. This study is aimed at predicting the morphology of a novel scaffold for ligament tissue engineering, based on multilayer braided biodegradable copoly(lactic acid-co-(e-caprolactone)) (PLCL) fibers The process used to create the scaffold is briefly presented, and the degradations of the material before and after the scaffold processing are compared. The process offers varying parameters, such as the number of layers in the scaffold, the pitch length of the braid, and the fibers’ diameter. The prediction of the morphology in terms of pore size distribution and pores interconnectivity as a function of these parameters is performed numerically using an original method based on a virtual scaffold. The virtual scaffold geometry and the prediction of pore size distribution are evaluated by comparison with experimental results. The presented process permits creation of a tailorable scaffold for ligament tissue engineering using basic equipment and from minimum amounts of raw material. The virtual scaffold geometry closely mimics the geometry of real scaffolds, and the prediction of the pore size distribution is found to be in good accordance with measurements on real scaffolds. The scaffold offers an interconnected network of pores the sizes of which are adjustable by playing on the process parameters and are able to match the ideal pore size reported for tissue ingrowth. The adjustability of the presented scaffold could permit its application in both classical ACL reconstructions and anatomical double-bundle reconstructions. The precise knowledge of the scaffold morphology using the virtual scaffold will be useful to interpret the activity of cells once it will be seeded into the scaffold. An interesting perspective of the present work is to perform a similar study aiming at predicting the mechanical response of the scaffold according to the same process parameters, by implanting the virtual scaffold into a finite element algorithm.

References

1.
Vunjak-Novakovic
,
G.
,
Altman
,
G.
,
Horan
,
K.
, and
Kaplan
,
D. L.
, 2004, “
Tissue Engineering of Ligaments
,”
Annu. Rev. Biomed. Eng.
,
6
, pp.
131
156
.
2.
Dargel
,
J.
,
Gotter
,
M.
,
Mader
,
K.
,
Pennig
,
D.
,
Koebke
,
J.
, and
Schmidt-Wiethoff
,
R.
, 2007, “
Biomechanics of the Anterior Cruciate Ligament and Implications for Surgical Reconstruction
,”
Strat. Trauma Limb Reconstr.
,
2
, pp.
1
12
.
3.
Gao
,
B.
, and
Zheng
,
N. N.
, 2010, “
Alterations in Three-Dimensional Joint Kinematics of Anterior Cruciate Ligament-Deficient and -Reconstructed Knees During Walking
,”
Clin. Biomech.
,
25
, pp.
22
229
.
4.
Karmani
,
S.
, and
Ember
,
T.
, 2003, “
The Anterior Cruciate Ligament -II
,”
Curr. Orthop.
,
18
, pp.
49
57
.
5.
Bicer
,
K.
,
Lustig
,
S.
,
Servien
,
E.
,
Selmi
,
T. A. S.
, and
Neyret
,
P.
, 2010, “
Current Knowledge in the Anatomy of the Human Anterior Cruciate Ligament
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
18
, pp.
1075
1084
.
6.
Lattermann
,
C.
,
Zelle
,
B. A.
,
Ferretti
,
M.
,
Chhabra
,
A.
, and
Fu
,
F. H.
, 2005, “
Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction
,”
Techn.Ortho.
,
20
(
4
), pp.
414
420
.
7.
Shen
,
W.
,
Jordan
,
S.
, and
Fu
,
F.
, 2007, “
Review Article- Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction
,”
J. Orthop. Surg.
,
15
, pp.
216
221
.
8.
Yasuda
,
K.
,
Tanabe
,
Y.
,
Kondo
,
E.
,
Kitamura
,
N.
, and
Tohyama
,
H.
, 2010, “
Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction
,”
Arthroscopy: J. Arthrosc Rel. Surg.
,
26
(
9
), pp.
S21
S34
.
9.
Jones
,
R. S.
,
Nawana
,
N. S.
,
Pearcy
,
M. J.
,
Learmonth
,
D. J. A.
,
Bickerstaff
,
D. R.
,
Costi
,
J. J.
, and
Paterson
,
R. S.
, 1995, “
Mechanical Properties of the Human Anterior Cruciate Ligament
,”
Clin. Biomech.
,
10
(
7
), pp.
339
344
.
10.
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Slauterbeck
,
J.
, and
Hashemi
,
J.
, 2006, “
Sex-Based Differences in the Tensile Properties of the Human Anterior Cruciate Ligament
,”
J. Biomech.
,
39
, pp.
2943
2950
.
11.
Kennedy
,
J. C.
,
Hawkins
,
R. J.
,
Willis
,
R. B.
, and
Danylchuk
,
K. D.
, 1976, “
Tension Studies of Human Knee Ligaments
,”
J. Bone Joint Surg. Am.
,
58
, pp.
350
355
.
12.
Noyes
,
F. R.
, and
Grood
,
E.S.
, 1976, “
The Strength of the Anterior Cruciate Ligament in Humans and Rhesus Monkeys
,”
J. Bone Joint Surg. Am
,
58
, pp.
1074
1082
.
13.
Cooper
,
J. A.
,
Lu
,
H. H.
,
Ko
,
F. K.
,
Freeman
,
J. W.
, and
Laurencin
,
C.T.
, 2005, “
Fiber-Based Tissue-Engineered Scaffold for Ligament Replacement: Design Considerations and In Vitro Evaluation
,”
Biomaterials
,
26
, pp.
1523
1532
.
14.
Vieira
,
A. C.
,
Guedes
,
R. M.
, and
Marques
,
A. T.
, 2009, “
Development of Ligament Tissue Biodegradable Devices: A Review
,”
J. Biomech.
,
42
, pp.
2421
2430
.
15.
Chen
,
G.
,
Ushida
,
T.
, and
Tateishi
,
T.
, 2001, “
Development of Biodegradable Porous Scaffolds for Tissue Engineering
,”
Mater. Sci. Eng., C
,
17
, pp.
63
69
.
16.
Liu
,
C.
,
Xia
,
Z.
, and
Czernuszka
,
J. T.
, 2007, “
Design and Development of Three-Dimensional Scaffolds for Tissue Engineering
,”
Chem. Eng. Res. Des.
,
85
(
A7
), pp.
1051
1064
.
17.
Nair
,
L. S.
, and
Laurencin
,
C. T.
, 2007, “
Biodegradable Polymers as Biomaterials
,”
Prog. Polym. Sci.
,
32
, pp.
762
798
.
18.
Vilay
,
V.
,
Mariatti
,
M.
,
Zulkifli
,
A.
,
Pasomsouk
,
K.
, and
Mitsugu
,
T.
, 2009, “
Characterization of the Mechanical and Thermal Properties and Morphological Behavior of Biodegradable Poly(L-lactide)/Poly(ɛ-caprolactone) and Poly(L-lactide)/Poly(butylene succinate-co-L-lactate) Polymeric Blends
,”
J. Appl. Polym. Sci.
,
114
, pp.
1784
1792
.
19.
Hiljanen-Vainio
,
M.
,
Karjalainen
,
T.
, and
Seppala
,
J.
, 1995, “
Biodegradable Lactone Copolymers. I. Characterization and Mechanical Behavior of ɛ-caprolactone and Lactide Copolymers
,”
J. Appl. Polym. Sci.
,
59
, pp.
1281
1288
.
20.
Laurencin
,
C. T.
, and
Freeman
,
J. W.
, 2005, “
Ligament Tissue Engineering: An Evolutionary Materials Science Approach
,”
Biomaterials
,
26
, pp.
7530
7536
.
21.
Lu
,
H. H.
,
Cooper
,
J. A.
,
Manuel
,
S.
,
Freeman
,
J. W.
,
Attawia
,
M. A.
,
Ko
,
F. K.
, and
Laurencin
,
C. T.
, 2005, “
Anterior Cruciate Ligament Regeneration Using Braided Biodegradable Scaffolds: In Vitro Optimization Studies
,”
Biomaterials
,
26
, pp.
4805
4816
.
22.
Freeman
,
J. W.
,
Woods
,
M. D.
, and
Laurencin
,
C. T.
, 2007, “
Tissue Engineering of the Anterior Cruciate Ligament Using a Braid–Twist Scaffold Design
,”
J. Biomech.
,
40
, pp.
2029
2036
.
23.
Ide
,
A.
,
Sakane
,
M.
,
Chen
,
G.
,
Shimojo
,
H.
,
Ushida
,
T.
,
Tateishi
,
T.
,
Wadano
,
Y.
, and
Miyanaga
,
Y.
, 2001, “
Collagen Hybridization With Poly(L-Lactic) Acid Braid Promotes Ligament Cell Migration
,”
Mater Sci. Eng., C
,
17
, pp.
95
99
.
24.
Omeroglu
,
S.
, 2006, “
The Effect of Braiding Parameters on the Mechanical Properties of Braided Ropes
,”
Fibers Text.East. Eur.
,
14
(
4
), pp.
53
57
.
25.
Jones
,
A. C.
,
Arns
,
C. H.
,
Hutmacher
,
D. W.
,
Milthorpe
,
B. K.
,
Sheppard
,
A. P.
, and
Knackstedt
,
M. A.
, 2009, “
The Correlation of Pore Morphology, Interconnectivity and Physical Properties of 3D Ceramic Scaffolds With Bone Ingrowth
,”
Biomaterials.
,
30
, pp.
1440
1451
.
26.
D’Amore
,
A.
,
Stella
,
J. A.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
, 2010, “
Characterization of the Complete Fiber Network Topology of Planar Fibrous Tissues and Scaffolds
,”
Biomaterials
,
31
, pp.
5345
5354
.
27.
Melchels
,
F. P. W.
,
Bertoldi
,
K.
,
Gabrrielli
,
R.
,
Velders
,
A. H.
,
Feijen
,
J.
, and
Grijpma
,
D.W.
, 2010, “
Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography
,”
Biomaterials
,
31
, pp.
6909
6916
.
28.
Zhang
,
Q.
,
Beale
,
D.
, and
Broughton
,
R.M.
, 1999, “
Analysis of Circular Braiding Process, Part 1: Theoretical Investigation of Kinematics of the Circular Braiding Process
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
345
350
.
29.
Altman
,
G. H.
,
Horan
,
R. L.
,
Lu
,
H. H.
,
Moreau
,
J.
,
Martin
,
I.
,
Richmond
,
J. C.
, and
Kaplan
,
D.L.
, 2002, “
Silk Matrix for Tissue Engineered Anterior Cruciate Ligament
,”
Biomaterials
,
23
, pp.
4131
4141
.
30.
Gentleman
,
E.
,
Livesay
,
G. A.
,
Dee
,
K. C.
, and
Nauman
,
E.A.
, 2006, “
Development of Ligament-Like Structural Organization and Properties in Cell-Seeded Collagen Scaffolds in vitro
,”
Ann. Biomed. Eng.
,
34
(
5
), pp.
726
736
.
31.
Ayranci
,
C.
, and
Carey
,
J.
, 2008, “
2D Braided Composites—A Review for Stiffness Critical Applications
,”
Compos. Struct.
,
85
, pp.
43
58
.
32.
Lyons
,
J.
, and
Pastore
,
C.M.
, 2004, “
Effect of Braid Structure on Yarn Cross-Sectional Shape
,”
Fibers Polym.
,
5
(
3
), pp.
182
186
.
33.
Diamond
,
S.
, 2000, “
Mercury Porosimetry—An Inappropriate Method for the Measurement of Pore Size Distributions in Cement-Based Materials
,”
Cem. Concr. Res.
,
30
, pp.
1517
1525
.
34.
Oh
,
S. H.
,
Park
,
I. K.
,
Kim
,
J. M.
, and
Lee
,
J.H.
, 2007, “
In Vitro and In Vivo Characteristics of PCL Scaffolds With Pore Size Gradient Fabricated by a Centrifugation Method
,”
Biomaterials
,
28
, pp.
1664
1671
.
35.
Durville
,
D.
, 2009, “
Finite Element Simulation of Textile Materials at the Fiber Scale
,”
Proc. International SAMPE Symposium and Exhibition
, 54.
36.
Durville
,
D.
, 2010, “
Simulation of the Mechanical Behavior of Woven Fabrics at the Scale of Fibers
,”
Int. J. Mater. Form.
,
3
(
Suppl. 2
), pp.
1241
1251
.
37.
Miao
,
Y.
,
Zhou
,
E.
,
Wang
,
Y.
, and
Cheeseman
,
B.A.
, 2008, “
Mechanics of Textile Composites: Micro-Geometry
,”
Compos. Sci. Technol.
,
68
, pp.
1671
1678
.
38.
Wang
,
Y.
, and
Sun
,
X.
, 2001, “
Digital-Element Simulation of Textile Processes
,”
Compos. Sci. Technol.
,
61
, pp.
311
319
.
39.
Sandino
,
C.
,
Planell
,
J. A.
, and
Lacroix
,
D.
, 2008, “
A Finite Element Study of Mechanical Stimuli in Scaffolds for Bone Tissue Engineering
,”
J. Biomech.
,
41
, pp.
1005
1014
.
40.
Lacroix
,
D.
,
Chateau
,
A.
,
Ginebra
,
M.-P.
, and
Planell
,
J.A.
, 2006, “
Micro-Finite Element Models of Bone Tissue-Engineering Scaffolds
,”
Biomaterials
,
27
, pp.
5326
5334
.
41.
Ingber
,
D.E.
, 2006, “
Cellular Mechanotransduction- Putting All the Pieces Together Again
,”
FASEB J.
,
20
, pp.
811
827
.
You do not currently have access to this content.