Cells are highly dynamic and mechanical automata powered by molecular motors that respond to external cues. Intracellular signaling pathways, either chemical or mechanical, can be activated and spatially coordinated to induce polarized cell states and directional migration. Physiologically, cells navigate through complex microenvironments, typically in three-dimensional (3D) fibrillar networks. In diseases, such as metastatic cancer, they invade across physiological barriers and remodel their local environments through force, matrix degradation, synthesis, and reorganization. Important external factors such as dimensionality, confinement, topographical cues, stiffness, and flow impact the behavior of migrating cells and can each regulate motility. Here, we review recent progress in our understanding of single-cell migration in complex microenvironments.

References

1.
Paszek
,
M. J.
,
Zahir
,
N.
,
Johnson
,
K. R.
,
Lakins
,
J. N.
,
Rozenberg
,
G. I.
,
Gefen
,
A.
,
Reinhart-King
,
C. A.
,
Margulies
,
S. S.
,
Dembo
,
M.
,
Boettiger
,
D.
,
Hammer
,
D. A.
, and
Weaver
,
V. M.
,
2005
, “
Tensional Homeostasis and the Malignant Phenotype
,”
Cancer Cell
,
8
(
3
), pp.
241
254
.
2.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.
3.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y.-L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.
4.
Ridley
,
A. J.
,
Schwartz
,
M. A.
,
Burridge
,
K.
,
Firtel
,
R. A.
,
Ginsberg
,
M. H.
,
Borisy
,
G.
,
Parsons
,
J. T.
, and
Horwitz
,
A. R.
,
2003
, “
Cell Migration: Integrating Signals From Front to Back
,”
Science
,
302
(
5651
), pp.
1704
1709
.
5.
Lauffenburger
,
D. A.
, and
Horwitz
,
A. F.
,
1996
, “
Cell Migration: A Physically Integrated Molecular Process
,”
Cell
,
84
(
3
), pp.
359
369
.
6.
Swaney
,
K. F.
,
Huang
,
C.-H.
, and
Devreotes
,
P. N.
,
2010
, “
Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity
,”
Annu. Rev. Biophys.
,
39
(
4
), pp.
265
289
.
7.
Smith
,
J. T.
,
Elkin
,
J. T.
, and
Reichert
,
W. M.
,
2006
, “
Directed Cell Migration on Fibronectin Gradients: Effect of Gradient Slope
,”
Exp. Cell Res.
,
312
(
13
), pp.
2424
2432
.
8.
Bowersox
,
J. C.
, and
Sorgente
,
N.
,
1982
, “
Chemotaxis of Aortic Endothelial Cells in Response to Fibronectin
,”
Cancer Res.
,
42
(
7
), pp.
2547
2551
.
9.
Lo
,
C. M.
,
Wang
,
H. B.
,
Dembo
,
M.
, and
Wang
,
Y. L.
,
2000
, “
Cell Movement is Guided by the Rigidity of the Substrate
,”
Biophys. J.
,
79
(
1
), pp.
144
152
.
10.
Vincent
,
L. G.
,
Choi
,
Y. S.
,
Alonso-Latorre
,
B.
,
del Álamo
,
J. C.
, and
Engler
,
A. J.
,
2013
, “
Mesenchymal Stem Cell Durotaxis Depends on Substrate Stiffness Gradient Strength
,”
Biotechnol. J.
,
8
(
4
), pp.
472
484
.
11.
Meili
,
R.
,
Ellsworth
,
C.
,
Lee
,
S.
,
Reddy
,
T. B.
,
Ma
,
H.
, and
Firtel
,
R. A.
,
1999
, “
Chemoattractant-Mediated Transient Activation and Membrane Localization of Akt/PKB is Required for Efficient Chemotaxis to cAMP in Dictyostelium
,”
EMBO J.
,
18
(
8
), pp.
2092
2105
.
12.
Jin
,
T.
,
Zhang
,
N.
,
Long
,
Y.
,
Parent
,
C. A.
, and
Devreotes
,
P. N.
,
2000
, “
Localization of the G Protein Betagamma Complex in Living Cells During Chemotaxis
,”
Science
,
287
(
5455
), pp.
1034
1036
.
13.
Raftopoulou
,
M.
, and
Hall
,
A.
,
2004
, “
Cell Migration: Rho GTPases Lead the Way
,”
Dev. Biol.
,
265
(
1
), pp.
23
32
.
14.
Ridley
,
A. J.
,
Paterson
,
H. F.
,
Johnston
,
C. L.
,
Diekmann
,
D.
, and
Hall
,
A.
,
1992
, “
The Small GTP-Binding Protein Rac Regulates Growth Factor-Induced Membrane Ruffling
,”
Cell
,
70
(
3
), pp.
401
410
.
15.
Nobes
,
C. D.
, and
Hall
,
A.
,
1995
, “
Rho, Rac, and Cdc42 GTPases Regulate the Assembly of Multimolecular Focal Complexes Associated With Actin Stress Fibers, Lamellipodia, and Filopodia
,”
Cell
,
81
(
1
), pp.
53
62
.
16.
Kimura
,
K.
,
Ito
,
M.
,
Amano
,
M.
,
Chihara
,
K.
,
Fukata
,
Y.
,
Nakafuku
,
M.
,
Yamamori
,
B.
,
Feng
,
J.
,
Nakano
,
T.
,
Okawa
,
K.
,
Iwamatsu
,
A.
, and
Kaibuchi
,
K.
,
1996
, “
Regulation of Myosin Phosphatase by Rho and Rho-Associated Kinase (Rho-Kinase)
,”
Science
,
273
(
5272
), pp.
245
248
.
17.
Vigil
,
D.
,
Cherfils
,
J.
,
Rossman
,
K. L.
, and
Der
,
C. J.
,
2010
, “
Ras Superfamily GEFs and GAPs: Validated and Tractable Targets for Cancer Therapy?
Nat. Rev. Cancer
,
10
(
12
), pp.
842
857
.
18.
Pollard
,
T. D.
, and
Cooper
,
J. A.
,
2009
, “
Actin, a Central Player in Cell Shape and Movement
,”
Science
,
326
(
5957
), pp.
1208
1212
.
19.
Blanchoin
,
L.
,
Boujemaa-Paterski
,
R.
,
Sykes
,
C.
, and
Plastino
,
J.
,
2014
, “
Actin Dynamics, Architecture, and Mechanics in Cell Motility
,”
Physiol. Rev.
,
94
(
1
), pp.
235
263
.
20.
Insall
,
R. H.
, and
Machesky
,
L. M.
,
2009
, “
Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks
,”
Dev. Cell
,
17
(
3
), pp.
310
322
.
21.
Turing
,
A. M.
,
1952
, “
The Chemical Basis of Morphogenesis
,”
Philos. Trans. R. Soc. B
,
237
(
641
), pp.
37
72
.
22.
Maini
,
P. K.
,
Woolley
,
T. E.
,
Baker
,
R. E.
,
Gaffney
,
E. A.
, and
Lee
,
S. S.
,
2012
, “
Turing's Model for Biological Pattern Formation and the Robustness Problem
,”
Interface Focus
,
2
(
4
), pp.
487
496
.
23.
Meinhardt
,
H.
, and
Gierer
,
A.
,
2000
, “
Pattern Formation by Local Self-Activation and Lateral Inhibition
,”
Bioessays
,
22
(
8
), pp.
753
760
.
24.
Walczak
,
A. M.
,
Sasai
,
M.
, and
Wolynes
,
P. G.
,
2005
, “
Self-Consistent Proteomic Field Theory of Stochastic Gene Switches
,”
Biophys. J.
,
88
(
2
), pp.
828
850
.
25.
Spill
,
F.
,
Guerrero
,
P.
,
Alarcon
,
T.
,
Maini
,
P. K.
, and
Byrne
,
H.
,
2015
, “
Hybrid Approaches for Multiple-Species Stochastic Reaction–Diffusion Models
,”
J. Comput. Phys.
,
299
, pp.
429
445
.
26.
Spill
,
F.
,
Guerrero
,
P.
,
Alarcon
,
T.
,
Maini
,
P. K.
, and
Byrne
,
H. M.
,
2015
, “
Mesoscopic and Continuum Modelling of Angiogenesis
,”
J. Math. Biol.
,
70
(
3
), pp.
485
532
.
27.
De la Cruz
,
R.
,
Guerrero
,
P.
,
Spill
,
F.
, and
Alarcón
,
T.
,
2015
, “
The Effects of Intrinsic Noise on the Behaviour of Bistable Cell Regulatory Systems Under Quasi-Steady State Conditions
,”
J. Chem. Phys.
,
143
(
7
), p.
074105
.
28.
Hänggi
,
P.
,
2002
, “
Stochastic Resonance in Biology: How Noise Can Enhance Detection of Weak Signals and Help Improve Biological Information Processing
,”
ChemPhysChem
,
3
(
3
), pp.
285
290
.
29.
Azimi
,
M.
,
Jamali
,
Y.
, and
Mofrad
,
M. R. K.
,
2011
, “
Accounting for Diffusion in Agent Based Models of Reaction–Diffusion Systems With Application to Cytoskeletal Diffusion
,”
PLoS One
,
6
(
9
), p.
e25306
.
30.
Bentley
,
K.
,
Gerhardt
,
H.
, and
Bates
,
P. A.
,
2008
, “
Agent-Based Simulation of Notch-Mediated Tip Cell Selection in Angiogenic Sprout Initialisation
,”
J. Theor. Biol.
,
250
(
1
), pp.
25
36
.
31.
Alarcon
,
T.
,
Byrne
,
H. M.
, and
Maini
,
P. K.
,
2010
, “
A Multiple Scale Model for Tumor Growth
,”
Multiscale Model. Simul.
,
3
(
2
), pp.
440
475
.
32.
Levchenko
,
A.
, and
Iglesias
,
P. A.
,
2002
, “
Models of Eukaryotic Gradient Sensing: Application to Chemotaxis of Amoebae and Neutrophils
,”
Biophys. J.
,
82
(
1
), pp.
50
63
.
33.
Mori
,
Y.
,
Jilkine
,
A.
, and
Edelstein-Keshet
,
L.
,
2008
, “
Wave-Pinning and Cell Polarity From a Bistable Reaction–Diffusion System
,”
Biophys. J.
,
94
(
9
), pp.
3684
3697
.
34.
Vanderlei
,
B.
,
Feng
,
J. J.
, and
Edelstein-Keshet
,
L.
,
2011
, “
A Computational Model of Cell Polarization and Motility Coupling Mechanics and Biochemistry
,”
Multiscale Model. Simul.
,
9
(
4
), pp.
1420
1443
.
35.
Holmes
,
W. R.
, and
Edelstein-Keshet
,
L.
,
2012
, “
A Comparison of Computational Models for Eukaryotic Cell Shape and Motility
,”
PLoS Comput. Biol.
,
8
(
12
), p.
e1002793
.
36.
Jilkine
,
A.
,
Marée
,
A. F. M.
, and
Edelstein-Keshet
,
L.
,
2007
, “
Mathematical Model for Spatial Segregation of the Rho-Family GTPases Based on Inhibitory Crosstalk
,”
Bull. Math. Biol.
,
69
(
6
), pp.
1943
1978
.
37.
Dawes
,
A. T.
, and
Edelstein-Keshet
,
L.
,
2007
, “
Phosphoinositides and Rho Proteins Spatially Regulate Actin Polymerization to Initiate and Maintain Directed Movement in a One-Dimensional Model of a Motile Cell
,”
Biophys. J.
,
92
(
3
), pp.
744
768
.
38.
Holmes
,
W. R.
,
Lin
,
B.
,
Levchenko
,
A.
, and
Edelstein-Keshet
,
L.
,
2012
, “
Modelling Cell Polarization Driven by Synthetic Spatially Graded Rac Activation
,”
PLoS Comput. Biol.
,
8
(
6
), p.
e1002366
.
39.
Kozlov
,
M. M.
, and
Mogilner
,
A.
,
2007
, “
Model of Polarization and Bistability of Cell Fragments
,”
Biophys. J.
,
93
(
11
), pp.
3811
3819
.
40.
Altschuler
,
S. J.
,
Angenent
,
S. B.
,
Wang
,
Y.
, and
Wu
,
L. F.
,
2008
, “
On the Spontaneous Emergence of Cell Polarity
,”
Nature
,
454
(
7206
), pp.
886
889
.
41.
Pollard
,
T. D.
,
2007
, “
Regulation of Actin Filament Assembly by Arp2/3 Complex and Formins
,”
Annu. Rev. Biophys. Biomol. Struct.
,
36
(
1
), pp.
451
477
.
42.
Le Clainche
,
C.
, and
Carlier
,
M.-F.
,
2008
, “
Regulation of Actin Assembly Associated With Protrusion and Adhesion in Cell Migration
,”
Physiol. Rev.
,
88
(
2
), pp.
489
513
.
43.
McCullough
,
B. R.
,
Grintsevich
,
E. E.
,
Chen
,
C. K.
,
Kang
,
H.
,
Hutchison
,
A. L.
,
Henn
,
A.
,
Cao
,
W.
,
Suarez
,
C.
,
Martiel
,
J.-L.
,
Blanchoin
,
L.
,
Reisler
,
E.
, and
De La Cruz
,
E. M.
,
2011
, “
Cofilin-Linked Changes in Actin Filament Flexibility Promote Severing
,”
Biophys. J.
,
101
(
1
), pp.
151
159
.
44.
Murrell
,
M. P.
, and
Gardel
,
M. L.
,
2012
, “
F-Actin Buckling Coordinates Contractility and Severing in a Biomimetic Actomyosin Cortex
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
51
), pp.
20820
20825
.
45.
Vicente-Manzanares
,
M.
, and
Horwitz
,
A. R.
,
2011
, “
Cell Migration: An Overview
,”
Methods Mol. Biol.
,
769
, pp.
1
24
.
46.
Hood
,
J. D.
, and
Cheresh
,
D. A.
,
2002
, “
Role of Integrins in Cell Invasion and Migration
,”
Nat. Rev. Cancer
,
2
(
2
), pp.
91
100
.
47.
Kong
,
F.
,
García
,
A. J.
,
Mould
,
A. P.
,
Humphries
,
M. J.
, and
Zhu
,
C.
,
2009
, “
Demonstration of Catch Bonds Between an Integrin and Its Ligand
,”
J. Cell Biol.
,
185
(
7
), pp.
1275
1284
.
48.
Thomas
,
W. E.
,
Vogel
,
V.
, and
Sokurenko
,
E.
,
2008
, “
Biophysics of Catch Bonds
,”
Annu. Rev. Biophys.
,
37
(
1
), pp.
399
416
.
49.
Vicente-Manzanares
,
M.
,
Ma
,
X.
,
Adelstein
,
R. S.
, and
Horwitz
,
A. R.
,
2009
, “
Non-Muscle Myosin II Takes Centre Stage in Cell Adhesion and Migration
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
11
), pp.
778
790
.
50.
Gardel
,
M. L.
,
Schneider
,
I. C.
,
Aratyn-Schaus
,
Y.
, and
Waterman
,
C. M.
,
2010
, “
Mechanical Integration of Actin and Adhesion Dynamics in Cell Migration
,”
Annu. Rev. Cell Dev. Biol.
,
26
(
1
), pp.
315
333
.
51.
Kutys
,
M. L.
, and
Yamada
,
K. M.
,
2014
, “
An Extracellular-Matrix-Specific GEF–GAP Interaction Regulates Rho GTPase Crosstalk for 3D Collagen Migration
,”
Nat. Cell Biol.
,
16
(
9
), pp.
909
917
.
52.
Provenzano
,
P. P.
,
Inman
,
D. R.
,
Eliceiri
,
K. W.
,
Trier
,
S. M.
, and
Keely
,
P. J.
,
2008
, “
Contact Guidance Mediated Three-Dimensional Cell Migration is Regulated by Rho/ROCK-Dependent Matrix Reorganization
,”
Biophys. J.
,
95
(
11
), pp.
5374
5384
.
53.
Kim
,
A.
,
Lakshman
,
N.
, and
Petroll
,
W. M.
,
2006
, “
Quantitative Assessment of Local Collagen Matrix Remodeling in 3-D Culture: The Role of Rho Kinase
,”
Exp. Cell Res.
,
312
(
18
), pp.
3683
3692
.
54.
Charras
,
G.
, and
Paluch
,
E.
,
2008
, “
Blebs Lead the Way: How to Migrate Without Lamellipodia
,”
Nat. Rev. Mol. Cell Biol.
,
9
(
9
), pp.
730
736
.
55.
Paluch
,
E. K.
, and
Raz
,
E.
,
2013
, “
The Role and Regulation of Blebs in Cell Migration
,”
Curr. Opin. Cell Biol.
,
25
(
5
), pp.
582
590
.
56.
Meyers
,
J.
,
Craig
,
J.
, and
Odde
,
D. J.
,
2006
, “
Potential for Control of Signaling Pathways Via Cell Size and Shape
,”
Curr. Biol.
,
16
(
17
), pp.
1685
1693
.
57.
Spill
,
F.
,
Andasari
,
V.
,
Mak
,
M.
,
Kamm
,
R. D.
, and
Zaman
,
M. H.
,
2015
, “
Effects of 3D Geometries on Cellular Gradient Sensing and Polarization
,” arXiv:1508.02786.
58.
Kim
,
M.-C.
,
Kim
,
C.
,
Wood
,
L.
,
Neal
,
D.
,
Kamm
,
R. D.
, and
Asada
,
H. H.
,
2012
, “
Integrating Focal Adhesion Dynamics, Cytoskeleton Remodeling, and Actin Motor Activity for Predicting Cell Migration on 3D Curved Surfaces of the Extracellular Matrix
,”
Integr. Biol. (Camb).
,
4
(
11
), pp.
1386
1397
.
59.
Vorotnikov
,
A. V.
, and
Tyurin-Kuzmin
,
P. A.
,
2014
, “
Chemotactic Signaling in Mesenchymal Cells Compared to Amoeboid Cells
,”
Genes Dis.
,
1
(
2
), pp.
162
173
.
60.
Pathak
,
A.
, and
Kumar
,
S.
,
2011
, “
Biophysical Regulation of Tumor Cell Invasion: Moving Beyond Matrix Stiffness
,”
Integr. Biol. (Camb).
,
3
(
4
), pp.
267
278
.
61.
Petrie
,
R. J.
,
Doyle
,
A. D.
, and
Yamada
,
K. M.
,
2009
, “
Random Versus Directionally Persistent Cell Migration
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
8
), pp.
538
549
.
62.
Wolf
,
K.
,
Mazo
,
I.
,
Leung
,
H.
,
Engelke
,
K.
,
von Andrian
,
U. H.
,
Deryugina
,
E. I.
,
Strongin
,
A. Y.
,
Bröcker
,
E.-B.
, and
Friedl
,
P.
,
2003
, “
Compensation Mechanism in Tumor Cell Migration: Mesenchymal–Amoeboid Transition After Blocking of Pericellular Proteolysis
,”
J. Cell Biol.
,
160
(
2
), pp.
267
277
.
63.
Sahai
,
E.
, and
Marshall
,
C. J.
,
2003
, “
Differing Modes of Tumour Cell Invasion Have Distinct Requirements for Rho/ROCK Signalling and Extracellular Proteolysis
,”
Nat. Cell Biol.
,
5
(
8
), pp.
711
719
.
64.
Huang
,
Y. L.
,
Tung
,
C.-K.
,
Zheng
,
A.
,
Kim
,
B. J.
, and
Wu
,
M.
,
2015
, “
Interstitial Flows Promote Amoeboid Over Mesenchymal Motility of Breast Cancer Cells Revealed by a Three Dimensional Microfluidic Model
,”
Integr. Biol. (Camb).
,
7
(
11
), pp.
1402
1411
.
65.
Liu
,
Y.-J.
,
Le Berre
,
M.
,
Lautenschlaeger
,
F.
,
Maiuri
,
P.
,
Callan-Jones
,
A.
,
Heuzé
,
M.
,
Takaki
,
T.
,
Voituriez
,
R.
, and
Piel
,
M.
,
2015
, “
Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells
,”
Cell
,
160
(
4
), pp.
659
672
.
66.
Théry
,
M.
, and
Bornens
,
M.
,
2006
, “
Cell Shape and Cell Division
,”
Curr. Opin. Cell Biol.
,
18
(
6
), pp.
648
657
.
67.
Chen
,
C. S.
,
Mrksich
,
M.
,
Huang
,
S.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
1997
, “
Geometric Control of Cell Life and Death
,”
Science
,
276
(
5317
), pp.
1425
1428
.
68.
Dupont
,
S.
,
Morsut
,
L.
,
Aragona
,
M.
,
Enzo
,
E.
,
Giulitti
,
S.
,
Cordenonsi
,
M.
,
Zanconato
,
F.
,
Le Digabel
,
J.
,
Forcato
,
M.
,
Bicciato
,
S.
,
Elvassore
,
N.
, and
Piccolo
,
S.
,
2011
, “
Role of YAP/TAZ in Mechanotransduction
,”
Nature
,
474
(
7350
), pp.
179
183
.
69.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.
70.
Ridley
,
A. J.
,
2001
, “
Rho GTPases and Cell Migration
,”
J. Cell Sci.
,
114
(Pt
15
), pp.
2713
2722
.
71.
Fraley
,
S. I.
,
Feng
,
Y.
,
Krishnamurthy
,
R.
,
Kim
,
D.-H.
,
Celedon
,
A.
,
Longmore
,
G. D.
, and
Wirtz
,
D.
,
2010
, “
A Distinctive Role for Focal Adhesion Proteins in Three-Dimensional Cell Motility
,”
Nat. Cell Biol.
,
12
(
6
), pp.
598
604
.
72.
Pedersen
,
J. A.
, and
Swartz
,
M. A.
,
2005
, “
Mechanobiology in the Third Dimension
,”
Ann. Biomed. Eng.
,
33
(
11
), pp.
1469
1490
.
73.
Mak
,
M.
,
Kamm
,
R. D.
, and
Zaman
,
M. H.
,
2014
, “
Impact of Dimensionality and Network Disruption on Microrheology of Cancer Cells in 3D Environments
,”
PLoS Comput. Biol.
,
10
(
11
), p.
e1003959
.
74.
Chang
,
S. S.
,
Guo
,
W.
,
Kim
,
Y.
, and
Wang
,
Y.
,
2013
, “
Guidance of Cell Migration by Substrate Dimension
,”
Biophys. J.
,
104
(
2
), pp.
313
321
.
75.
Mak
,
M.
, and
Erickson
,
D.
,
2014
, “
Mechanical Decision Trees for Investigating and Modulating Single-Cell Cancer Invasion Dynamics
,”
Lab Chip
,
14
(
5
), pp.
964
971
.
76.
Doyle
,
A. D.
,
Wang
,
F. W.
,
Matsumoto
,
K.
, and
Yamada
,
K. M.
,
2009
, “
One-Dimensional Topography Underlies Three-Dimensional Fibrillar Cell Migration
,”
J. Cell Biol.
,
184
(
4
), pp.
481
490
.
77.
Conklin
,
M. W.
,
Eickhoff
,
J. C.
,
Riching
,
K. M.
,
Pehlke
,
C. A.
,
Eliceiri
,
K. W.
,
Provenzano
,
P. P.
,
Friedl
,
A.
, and
Keely
,
P. J.
,
2011
, “
Aligned Collagen is a Prognostic Signature for Survival in Human Breast Carcinoma
,”
Am. J. Pathol.
,
178
(
3
), pp.
1221
1232
.
78.
Sun
,
M.
,
Bloom
,
A. B.
, and
Zaman
,
M. H.
,
2015
, “
Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations With High Sensitivity
,”
PLoS One
,
10
(
7
), p.
e0131814
.
79.
Wang
,
H.
,
Abhilash
,
A. S.
,
Chen
,
C. S.
,
Wells
,
R. G.
, and
Shenoy
,
V. B.
,
2014
, “
Long-Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers
,”
Biophys. J.
,
107
(
11
), pp.
2592
2603
.
80.
Ma
,
X.
,
Schickel
,
M. E.
,
Stevenson
,
M. D.
,
Sarang-Sieminski
,
A. L.
,
Gooch
,
K. J.
,
Ghadiali
,
S. N.
, and
Hart
,
R. T.
,
2013
, “
Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission Between Cells
,”
Biophys. J.
,
104
(
7
), pp.
1410
1418
.
81.
Guo
,
C.
,
Ouyang
,
M.
,
Yu
,
J.
,
Maslov
,
J.
,
Price
,
A.
, and
Shen
,
C.
,
2012
, “
Long-Range Mechanical Force Enables Self-Assembly of Epithelial Tubular Patterns
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
15
), pp.
5576
5582
.
82.
Margadant
,
F.
,
Chew
,
L. L.
,
Hu
,
X.
,
Yu
,
H.
,
Bate
,
N.
,
Zhang
,
X.
, and
Sheetz
,
M.
,
2011
, “
Mechanotransduction In Vivo by Repeated Talin Stretch-Relaxation Events Depends Upon Vinculin
,”
PLoS Biol.
,
9
(
12
), p.
e1001223
.
83.
Krammer
,
A.
,
Lu
,
H.
,
Isralewitz
,
B.
,
Schulten
,
K.
, and
Vogel
,
V.
,
1999
, “
Forced Unfolding of the Fibronectin Type III Module Reveals a Tensile Molecular Recognition Switch
,”
Proc. Natl. Acad. Sci. U. S. A.
,
96
(
4
), pp.
1351
1356
.
84.
Mak
,
M.
,
Kim
,
T.
,
Zaman
,
M. H.
, and
Kamm
,
R. D.
,
2015
, “
Multiscale Mechanobiology: Computational Models for Integrating Molecules to Multicellular Systems
,”
Integr. Biol. (Camb).
,
7
(
10
), pp.
1093
1108
.
85.
Wolf
,
K.
, and
Friedl
,
P.
,
2009
, “
Mapping Proteolytic Cancer Cell–Extracellular Matrix Interfaces
,”
Clin. Exp. Metastasis
,
26
(
4
), pp.
289
298
.
86.
Irimia
,
D.
, and
Toner
,
M.
,
2009
, “
Spontaneous Migration of Cancer Cells Under Conditions of Mechanical Confinement
,”
Integr. Biol. (Camb).
,
1
(
8–9
), pp.
506
512
.
87.
Kraning-Rush
,
C. M.
,
Carey
,
S. P.
,
Lampi
,
M. C.
, and
Reinhart-King
,
C. A.
,
2013
, “
Microfabricated Collagen Tracks Facilitate Single Cell Metastatic Invasion in 3D
,”
Integr. Biol. (Camb).
,
5
(
3
), pp.
606
616
.
88.
Carey
,
S. P.
,
Rahman
,
A.
,
Kraning-Rush
,
C. M.
,
Romero
,
B.
,
Somasegar
,
S.
,
Torre
,
O. M.
,
Williams
,
R. M.
, and
Reinhart-King
,
C. A.
,
2015
, “
Comparative Mechanisms of Cancer Cell Migration Through 3D Matrix and Physiological Microtracks
,”
Am. J. Physiol. Cell Physiol.
,
308
(
6
), pp.
C436
C447
.
89.
Wyckoff
,
J. B.
,
Pinner
,
S. E.
,
Gschmeissner
,
S.
,
Condeelis
,
J. S.
, and
Sahai
,
E.
,
2006
, “
ROCK- and Myosin-Dependent Matrix Deformation Enables Protease-Independent Tumor–Cell Invasion In Vivo
,”
Curr. Biol.
,
16
(
15
), pp.
1515
1523
.
90.
Wolf
,
K.
,
Te Lindert
,
M.
,
Krause
,
M.
,
Alexander
,
S.
,
Te Riet
,
J.
,
Willis
,
A. L.
,
Hoffman
,
R. M.
,
Figdor
,
C. G.
,
Weiss
,
S. J.
, and
Friedl
,
P.
,
2013
, “
Physical Limits of Cell Migration: Control by ECM Space and Nuclear Deformation and Tuning by Proteolysis and Traction Force
,”
J. Cell Biol.
,
201
(
7
), pp.
1069
1084
.
91.
Friedl
,
P.
,
Wolf
,
K.
, and
Lammerding
,
J.
,
2011
, “
Nuclear Mechanics During Cell Migration
,”
Curr. Opin. Cell Biol.
,
23
(
1
), pp.
55
64
.
92.
Mak
,
M.
, and
Erickson
,
D.
,
2013
, “
A Serial Micropipette Microfluidic Device With Applications to Cancer Cell Repeated Deformation Studies
,”
Integr. Biol. (Camb).
,
5
(
11
), pp.
1374
1384
.
93.
Mak
,
M.
,
Reinhart-King
,
C. A.
, and
Erickson
,
D.
,
2013
, “
Elucidating Mechanical Transition Effects of Invading Cancer Cells With a Subnucleus-Scaled Microfluidic Serial Dimensional Modulation Device
,”
Lab Chip
,
13
(
3
), pp.
340
348
.
94.
Chen
,
M. B.
,
Whisler
,
J. A.
,
Jeon
,
J. S.
, and
Kamm
,
R. D.
,
2013
, “
Mechanisms of Tumor Cell Extravasation in an In Vitro Microvascular Network Platform
,”
Integr. Biol. (Camb).
,
5
(
10
), pp.
1262
1271
.
95.
Pollard
,
T. D.
, and
Borisy
,
G. G.
,
2003
, “
Cellular Motility Driven by Assembly and Disassembly of Actin Filaments
,”
Cell
,
112
(
4
), pp.
453
465
.
96.
Aguilar-Cuenca
,
R.
,
Juanes-García
,
A.
, and
Vicente-Manzanares
,
M.
,
2014
, “
Myosin II in Mechanotransduction: Master and Commander of Cell Migration, Morphogenesis, and Cancer
,”
Cell. Mol. Life Sci.
,
71
(
3
), pp.
479
492
.
97.
Wang
,
N.
,
Tytell
,
J. D.
, and
Ingber
,
D. E.
,
2009
, “
Mechanotransduction at a Distance: Mechanically Coupling the Extracellular Matrix With the Nucleus
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
75
82
.
98.
Guilluy
,
C.
,
Osborne
,
L. D.
,
Van Landeghem
,
L.
,
Sharek
,
L.
,
Superfine
,
R.
,
Garcia-Mata
,
R.
, and
Burridge
,
K.
,
2014
, “
Isolated Nuclei Adapt to Force and Reveal a Mechanotransduction Pathway in the Nucleus
,”
Nat. Cell Biol.
,
16
(
4
), pp.
376
381
.
99.
Levy
,
J. R.
, and
Holzbaur
,
E. L. F.
,
2008
, “
Dynein Drives Nuclear Rotation During Forward Progression of Motile Fibroblasts
,”
J. Cell Sci.
,
121
(
Pt 19
), pp.
3187
3195
.
100.
Brosig
,
M.
,
Ferralli
,
J.
,
Gelman
,
L.
,
Chiquet
,
M.
, and
Chiquet-Ehrismann
,
R.
,
2010
, “
Interfering With the Connection Between the Nucleus and the Cytoskeleton Affects Nuclear Rotation, Mechanotransduction and Myogenesis
,”
Int. J. Biochem. Cell Biol.
,
42
(
10
), pp.
1717
1728
.
101.
Houben
,
F.
,
Willems
,
C. H. M. P.
,
Declercq
,
I. L. J.
,
Hochstenbach
,
K.
,
Kamps
,
M. A.
,
Snoeckx
,
L. H. E. H.
,
Ramaekers
,
F. C. S.
, and
Broers
,
J. L. V.
,
2009
, “
Disturbed Nuclear Orientation and Cellular Migration in A-Type Lamin Deficient Cells
,”
Biochim. Biophys. Acta
,
1793
(
2
), pp.
312
324
.
102.
Balzer
,
E. M.
,
Tong
,
Z.
,
Paul
,
C. D.
,
Hung
,
W.-C.
,
Stroka
,
K. M.
,
Boggs
,
A. E.
,
Martin
,
S. S.
, and
Konstantopoulos
,
K.
,
2012
, “
Physical Confinement Alters Tumor Cell Adhesion and Migration Phenotypes
,”
FASEB J.
,
26
(
10
), pp.
4045
4056
.
103.
Stroka
,
K. M.
,
Jiang
,
H.
,
Chen
,
S.-H.
,
Tong
,
Z.
,
Wirtz
,
D.
,
Sun
,
S. X.
, and
Konstantopoulos
,
K.
,
2014
, “
Water Permeation Drives Tumor Cell Migration in Confined Microenvironments
,”
Cell
,
157
(
3
), pp.
611
623
.
104.
Wu
,
T.
,
Nieminen
,
T. A.
,
Mohanty
,
S.
,
Miotke
,
J.
,
Meyer
,
R. L.
,
Rubinsztein-Dunlop
,
H.
, and
Berns
,
M. W.
,
2011
, “
A Photon-Driven Micromotor Can Direct Nerve Fibre Growth
,”
Nat. Photonics
,
6
(
1
), pp.
62
67
.
105.
Wolf
,
K.
,
Wu
,
Y. I.
,
Liu
,
Y.
,
Geiger
,
J.
,
Tam
,
E.
,
Overall
,
C.
,
Stack
,
M. S.
, and
Friedl
,
P.
,
2007
, “
Multi-Step Pericellular Proteolysis Controls the Transition From Individual to Collective Cancer Cell Invasion
,”
Nat. Cell Biol.
,
9
(
8
), pp.
893
904
.
106.
Martin
,
P.
,
1997
, “
Wound Healing—Aiming for Perfect Skin Regeneration
,”
Science
,
276
(
5309
), pp.
75
81
.
107.
Brugués
,
A.
,
Anon
,
E.
,
Conte
,
V.
,
Veldhuis
,
J. H.
,
Gupta
,
M.
,
Colombelli
,
J.
,
Muñoz
,
J. J.
,
Brodland
,
G. W.
,
Ladoux
,
B.
, and
Trepat
,
X.
,
2014
, “
Forces Driving Epithelial Wound Healing
,”
Nat. Phys.
,
10
(
9
), pp.
683
690
.
108.
Kumar
,
S.
, and
Weaver
,
V. M.
,
2009
, “
Mechanics, Malignancy, and Metastasis: The Force Journey of a Tumor Cell
,”
Cancer Metastasis Rev.
,
28
(
1–2
), pp.
113
127
.
109.
Rowe
,
R. G.
, and
Weiss
,
S. J.
,
2009
, “
Navigating ECM Barriers at the Invasive Front: The Cancer Cell–Stroma Interface
,”
Annu. Rev. Cell Dev. Biol.
,
25
(
1
), pp.
567
595
.
110.
Luster
,
A. D.
,
Alon
,
R.
, and
von Andrian
,
U. H.
,
2005
, “
Immune Cell Migration in Inflammation: Present and Future Therapeutic Targets
,”
Nat. Immunol.
,
6
(
12
), pp.
1182
1190
.
111.
Mason
,
B. N.
,
Starchenko
,
A.
,
Williams
,
R. M.
,
Bonassar
,
L. J.
, and
Reinhart-King
,
C. A.
,
2013
, “
Tuning Three-Dimensional Collagen Matrix Stiffness Independently of Collagen Concentration Modulates Endothelial Cell Behavior
,”
Acta Biomater.
,
9
(
1
), pp.
4635
4644
.
112.
Branco da Cunha
,
C.
,
Klumpers
,
D. D.
,
Li
,
W. A.
,
Koshy
,
S. T.
,
Weaver
,
J. C.
,
Chaudhuri
,
O.
,
Granja
,
P. L.
, and
Mooney
,
D. J.
,
2014
, “
Influence of the Stiffness of Three-Dimensional Alginate/Collagen-I Interpenetrating Networks on Fibroblast Biology
,”
Biomaterials
,
35
(
32
), pp.
8927
8936
.
113.
Orban
,
J. M.
,
Wilson
,
L. B.
,
Kofroth
,
J. A.
,
El-Kurdi
,
M. S.
,
Maul
,
T. M.
, and
Vorp
,
D. A.
,
2004
, “
Crosslinking of Collagen Gels by Transglutaminase
,”
J. Biomed. Mater. Res. A
,
68
(
4
), pp.
756
762
.
114.
Kumar
,
S.
, and
Mehta
,
K.
,
2013
, “
Tissue Transglutaminase, Inflammation, and Cancer: How Intimate is the Relationship?
Amino Acids
,
44
(
1
), pp.
81
88
.
115.
Levental
,
K. R.
,
Yu
,
H.
,
Kass
,
L.
,
Lakins
,
J. N.
,
Egeblad
,
M.
,
Erler
,
J. T.
,
Fong
,
S. F. T.
,
Csiszar
,
K.
,
Giaccia
,
A.
,
Weninger
,
W.
,
Yamauchi
,
M.
,
Gasser
,
D. L.
, and
Weaver
,
V. M.
,
2009
, “
Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling
,”
Cell
,
139
(
5
), pp.
891
906
.
116.
Münster
,
S.
,
Jawerth
,
L. M.
,
Leslie
,
B. A.
,
Weitz
,
J. I.
,
Fabry
,
B.
, and
Weitz
,
D. A.
,
2013
, “
Strain History Dependence of the Nonlinear Stress Response of Fibrin and Collagen Networks
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
30
), pp.
12197
12202
.
117.
Jain
,
R. K.
,
2005
, “
Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy
,”
Science
,
307
(
5706
), pp.
58
62
.
118.
Del Alamo
,
J. C.
,
Norwich
,
G. N.
,
Li
,
Y. J.
,
Lasheras
,
J. C.
, and
Chien
,
S.
,
2008
, “
Anisotropic Rheology and Directional Mechanotransduction in Vascular Endothelial Cells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
40
), pp.
15411
15416
.
119.
Li
,
Y.-S. J.
,
Haga
,
J. H.
, and
Chien
,
S.
,
2005
, “
Molecular Basis of the Effects of Shear Stress on Vascular Endothelial Cells
,”
J. Biomech.
,
38
(
10
), pp.
1949
1971
.
120.
Shields
,
J. D.
,
Fleury
,
M. E.
,
Yong
,
C.
,
Tomei
,
A. A.
,
Randolph
,
G. J.
, and
Swartz
,
M. A.
,
2007
, “
Autologous Chemotaxis as a Mechanism of Tumor Cell Homing to Lymphatics Via Interstitial Flow and Autocrine CCR7 Signaling
,”
Cancer Cell
,
11
(
6
), pp.
526
538
.
121.
Polacheck
,
W. J.
,
Charest
,
J. L.
, and
Kamm
,
R. D.
,
2011
, “
Interstitial Flow Influences Direction of Tumor Cell Migration Through Competing Mechanisms
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
27
), pp.
11115
11120
.
122.
Polacheck
,
W. J.
,
German
,
A. E.
,
Mammoto
,
A.
,
Ingber
,
D. E.
, and
Kamm
,
R. D.
,
2014
, “
Mechanotransduction of Fluid Stresses Governs 3D Cell Migration
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
7
), pp.
2447
2452
.
123.
Galie
,
P. A.
,
Nguyen
,
D.-H. T.
,
Choi
,
C. K.
,
Cohen
,
D. M.
,
Janmey
,
P. A.
, and
Chen
,
C. S.
,
2014
, “
Fluid Shear Stress Threshold Regulates Angiogenic Sprouting
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
22
), pp.
7968
7973
.
124.
Jeon
,
J. S.
,
Bersini
,
S.
,
Gilardi
,
M.
,
Dubini
,
G.
,
Charest
,
J. L.
,
Moretti
,
M.
, and
Kamm
,
R. D.
,
2015
, “
Human 3D Vascularized Organotypic Microfluidic Assays to Study Breast Cancer Cell Extravasation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
1
), pp.
214
219
.
125.
Deisboeck
,
T. S.
,
Wang
,
Z.
,
Macklin
,
P.
, and
Cristini
,
V.
,
2011
, “
Multiscale Cancer Modeling
,”
Annu. Rev. Biomed. Eng.
,
13
(
1
), pp.
127
155
.
126.
García
,
S.
,
Sunyer
,
R.
,
Olivares
,
A.
,
Noailly
,
J.
,
Atencia
,
J.
, and
Trepat
,
X.
,
2015
, “
Generation of Stable Orthogonal Gradients of Chemical Concentration and Substrate Stiffness in a Microfluidic Device
,”
Lab Chip
,
15
(
12
), pp.
2606
2614
.
127.
Ricart
,
B. G.
,
John
,
B.
,
Lee
,
D.
,
Hunter
,
C. A.
, and
Hammer
,
D. A.
,
2011
, “
Dendritic Cells Distinguish Individual Chemokine Signals Through CCR7 and CXCR4
,”
J. Immunol.
,
186
(
1
), pp.
53
61
.
128.
Kabla
,
A. J.
,
2012
, “
Collective Cell Migration: Leadership, Invasion and Segregation
,”
J. R. Soc. Interface
,
9
(
77
), pp.
3268
3278
.
129.
Borau
,
C.
,
Polacheck
,
W. J.
,
Kamm
,
R. D.
, and
García-Aznar
,
J. M.
,
2014
, “
Probabilistic Voxel-Fe Model for Single Cell Motility in 3D
,”
In Silico Cell Tissue Sci.
,
1
(
1
), p. 2.
130.
Vedel
,
S.
,
Tay
,
S.
,
Johnston
,
D. M.
,
Bruus
,
H.
, and
Quake
,
S. R.
,
2013
, “
Migration of Cells in a Social Context
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
1
), pp.
129
134
.
You do not currently have access to this content.