Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.

References

1.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.
2.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.
3.
Baker
,
B. M.
,
Trappmann
,
B.
,
Wang
,
W. Y.
,
Sakar
,
M. S.
,
Kim
,
I. L.
,
Shenoy
,
V. B.
,
Burdick
,
J. A.
, and
Chen
,
C. S.
,
2015
, “
Cell-Mediated Fibre Recruitment Drives Extracellular Matrix Mechanosensing in Engineered Fibrillar Microenvironments
,”
Nat. Mater.
,
14
(
12
), pp.
1262
1268
.
4.
Przybyla
,
L.
,
Muncie
,
J. M.
, and
Weaver
,
V. M.
,
2016
, “
Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer
,”
Annu. Rev. Cell Dev. Biol.
,
32
, pp.
527
554
.
5.
Duscher
,
D.
,
Maan
,
Z. N.
,
Wong
,
V. W.
,
Rennert
,
R. C.
,
Januszyk
,
M.
,
Rodrigues
,
M.
,
Hu
,
M.
,
Whitmore
,
A. J.
,
Whittam
,
A. J.
,
Longaker
,
M. T.
, and
Gurtner
,
G. C.
,
2014
, “
Mechanotransduction and Fibrosis
,”
J. Biomech.
,
47
(
9
), pp.
1997
2005
.
6.
Cui
,
Y.
,
Hameed
,
F. M.
,
Yang
,
B.
,
Lee
,
K.
,
Pan
,
C. Q.
,
Park
,
S.
, and
Sheetz
,
M.
,
2015
, “
Cyclic Stretching of Soft Substrates Induces Spreading and Growth
,”
Nat. Commun.
,
6
, p.
6333
.
7.
Kurpinski
,
K.
,
Chu
,
J.
,
Hashi
,
C.
, and
Li
,
S.
,
2006
, “
Anisotropic Mechanosensing by Mesenchymal Stem Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
44
), pp.
16095
16100
.
8.
Johnson
,
B. D.
,
Mather
,
K. J.
, and
Wallace
,
J. P.
,
2011
, “
Mechanotransduction of Shear in the Endothelium: Basic Studies and Clinical Implications
,”
Vasc. Med.
,
16
(
5
), pp.
365
377
.
9.
Schwartz
,
M. A.
,
2010
, “
Integrins and Extracellular Matrix in Mechanotransduction
,”
Cold Spring Harbor Perspect. Biol.
,
2
(
12
), p.
a005066
.
10.
Janmey
,
P. A.
,
Wells
,
R. G.
,
Assoian
,
R. K.
, and
McCulloch
,
C. A.
,
2013
, “
From Tissue Mechanics to Transcription Factors
,”
Differ. Res. Biol. Diversity
,
86
(
3
), pp.
112
120
.
11.
Zaidel-Bar
,
R.
,
Itzkovitz
,
S.
,
Ma'ayan
,
A.
,
Iyengar
,
R.
, and
Geiger
,
B.
,
2007
, “
Functional Atlas of the Integrin Adhesome
,”
Nat. Cell Biol.
,
9
(
8
), pp.
858
867
.
12.
Kanchanawong
,
P.
,
Shtengel
,
G.
,
Pasapera
,
A. M.
,
Ramko
,
E. B.
,
Davidson
,
M. W.
,
Hess
,
H. F.
, and
Waterman
,
C. M.
,
2010
, “
Nanoscale Architecture of Integrin-Based Cell Adhesions
,”
Nature
,
468
(
7323
), pp.
580
584
.
13.
Geiger
,
B.
,
Spatz
,
J. P.
, and
Bershadsky
,
A. D.
,
2009
, “
Environmental Sensing Through Focal Adhesions
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
21
33
.
14.
Yan
,
J.
,
Yao
,
M.
,
Goult
,
B. T.
, and
Sheetz
,
M. P.
,
2015
, “
Talin Dependent Mechanosensitivity of Cell Focal Adhesions
,”
Cell. Mol. Bioeng.
,
8
(
1
), pp.
151
159
.
15.
Harburger
,
D. S.
, and
Calderwood
,
D. A.
,
2009
, “
Integrin Signalling at a Glance
,”
J. Cell Sci.
,
122
(
2
), pp.
159
163
.
16.
Zhou
,
A.-X.
,
Hartwig
,
J. H.
, and
Akyürek
,
L. M.
,
2010
, “
Filamins in Cell Signaling, Transcription and Organ Development
,”
Trends Cell Biol.
,
20
(
2
), pp.
113
123
.
17.
Craig
,
D. H.
,
Haimovich
,
B.
, and
Basson
,
M. D.
,
2007
, “
α-Actinin-1 Phosphorylation Modulates Pressure-Induced Colon Cancer Cell Adhesion Through Regulation of Focal Adhesion Kinase-Src Interaction
,”
Am. J. Physiol. Cell Physiol.
,
293
(
6
), pp.
C1862
C1874
.
18.
Sluchanko
,
N. N.
, and
Gusev
,
N. B.
,
2010
, “
14-3-3 Proteins and Regulation of Cytoskeleton
,”
Biochem. Biokhimiia
,
75
(
13
), pp.
1528
1546
.
19.
Schlegelmilch
,
K.
,
Mohseni
,
M.
,
Kirak
,
O.
,
Pruszak
,
J.
,
Rodriguez
,
J. R.
,
Zhou
,
D.
,
Kreger
,
B. T.
,
Vasioukhin
,
V.
,
Avruch
,
J.
,
Brummelkamp
,
T. R.
, and
Camargo
,
F. D.
,
2011
, “
Yap1 Acts Downstream of α-Catenin to Control Epidermal Proliferation
,”
Cell
,
144
(
5
), pp.
782
795
.
20.
Jaalouk
,
D. E.
, and
Lammerding
,
J.
,
2009
, “
Mechanotransduction Gone Awry
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
63
73
.
21.
Martinac
,
B.
,
2004
, “
Mechanosensitive Ion Channels: Molecules of Mechanotransduction
,”
J. Cell Sci.
,
117
(
12
), pp.
2449
2460
.
22.
Anishkin
,
A.
,
Loukin
,
S. H.
,
Teng
,
J.
, and
Kung
,
C.
,
2014
, “
Feeling the Hidden Mechanical Forces in Lipid Bilayer Is an Original Sense
,”
Proc. Natl. Acad. Sci.
,
111
(
22
), pp.
7898
7905
.
23.
Matthews
,
B. D.
,
Thodeti
,
C. K.
,
Tytell
,
J. D.
,
Mammoto
,
A.
,
Overby
,
D. R.
, and
Ingber
,
D. E.
,
2010
, “
Ultra-Rapid Activation of TRPV4 Ion Channels by Mechanical Forces Applied to Cell Surface Beta1 Integrins
,”
Integr. Biol. Quant. Biosci. Nano Macro
,
2
(
9
), pp.
435
442
.
24.
Hayakawa
,
K.
,
Tatsumi
,
H.
, and
Sokabe
,
M.
,
2008
, “
Actin Stress Fibers Transmit and Focus Force to Activate Mechanosensitive Channels
,”
J. Cell Sci.
,
121
(
Pt. 4
), pp.
496
503
.
25.
Clapham
,
D. E.
,
2007
, “
Calcium Signaling
,”
Cell
,
131
(
6
), pp.
1047
1058
.
26.
O'Conor
,
C. J.
,
Leddy
,
H. A.
,
Benefield
,
H. C.
,
Liedtke
,
W. B.
, and
Guilak
,
F.
,
2014
, “
TRPV4-Mediated Mechanotransduction Regulates the Metabolic Response of Chondrocytes to Dynamic Loading
,”
Proc. Natl. Acad. Sci.
,
111
(
4
), pp.
1316
1321
.
27.
Lee
,
W.
,
Leddy
,
H. A.
,
Chen
,
Y.
,
Lee
,
S. H.
,
Zelenski
,
N. A.
,
McNulty
,
A. L.
,
Wu
,
J.
,
Beicker
,
K. N.
,
Coles
,
J.
,
Zauscher
,
S.
,
Grandl
,
J.
,
Sachs
,
F.
,
Guilak
,
F.
, and
Liedtke
,
W. B.
,
2014
, “
Synergy Between Piezo1 and Piezo2 Channels Confers High-Strain Mechanosensitivity to Articular Cartilage
,”
Proc. Natl. Acad. Sci. U.S.A.
,
111
(
47
), pp.
E5114
5122
.
28.
Pathak
,
M. M.
,
Nourse
,
J. L.
,
Tran
,
T.
,
Hwe
,
J.
,
Arulmoli
,
J.
,
Le
,
D. T. T.
,
Bernardis
,
E.
,
Flanagan
,
L. A.
, and
Tombola
,
F.
,
2014
, “
Stretch-Activated Ion Channel Piezo1 Directs Lineage Choice in Human Neural Stem Cells
,”
Proc. Natl. Acad. Sci.
,
111
(
45
), pp.
16148
16153
.
29.
Lierop
,
J. E. V.
,
Wilson
,
D. P.
,
Davis
,
J. P.
,
Tikunova
,
S.
,
Sutherland
,
C.
,
Walsh
,
M. P.
, and
Johnson
,
J. D.
,
2002
, “
Activation of Smooth Muscle Myosin Light Chain Kinase by Calmodulin ROLE OF LYS30 and GLY40
,”
J. Biol. Chem.
,
277
(
8
), pp.
6550
6558
.
30.
Munevar
,
S.
,
Wang
,
Y.-L.
, and
Dembo
,
M.
,
2004
, “
Regulation of Mechanical Interactions Between Fibroblasts and the Substratum by Stretch-Activated Ca2+ Entry
,”
J. Cell Sci.
,
117
(
Pt. 1
), pp.
85
92
.
31.
Khatau
,
S. B.
,
Hale
,
C. M.
,
Stewart-Hutchinson
,
P. J.
,
Patel
,
M. S.
,
Stewart
,
C. L.
,
Searson
,
P. C.
,
Hodzic
,
D.
, and
Wirtz
,
D.
,
2009
, “
A Perinuclear Actin Cap Regulates Nuclear Shape
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
45
), pp.
19017
19022
.
32.
Versaevel
,
M.
,
Grevesse
,
T.
, and
Gabriele
,
S.
,
2012
, “
Spatial Coordination Between Cell and Nuclear Shape Within Micropatterned Endothelial Cells
,”
Nat. Commun.
,
3
, p.
671
.
33.
Neelam
,
S.
,
Chancellor
,
T. J.
,
Li
,
Y.
,
Nickerson
,
J. A.
,
Roux
,
K. J.
,
Dickinson
,
R. B.
, and
Lele
,
T. P.
,
2015
, “
Direct Force Probe Reveals the Mechanics of Nuclear Homeostasis in the Mammalian Cell
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
18
), pp.
5720
5725
.
34.
Maniotis
,
A. J.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
,
1997
, “
Demonstration of Mechanical Connections Between Integrins, Cytoskeletal Filaments, and Nucleoplasm That Stabilize Nuclear Structure
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
(
3
), pp.
849
854
.
35.
Guilak
,
F.
,
1995
, “
Compression-Induced Changes in the Shape and Volume of the Chondrocyte Nucleus
,”
J. Biomech.
,
28
(
12
), pp.
1529
1541
.
36.
Nathan
,
A. S.
,
Baker
,
B. M.
,
Nerurkar
,
N. L.
, and
Mauck
,
R. L.
,
2011
, “
Mechano-Topographic Modulation of Stem Cell Nuclear Shape on Nanofibrous Scaffolds
,”
Acta Biomater.
,
7
(
1
), pp.
57
66
.
37.
Poh
,
Y.-C.
,
Shevtsov
,
S. P.
,
Chowdhury
,
F.
,
Wu
,
D. C.
,
Na
,
S.
,
Dundr
,
M.
, and
Wang
,
N.
,
2012
, “
Dynamic Force-Induced Direct Dissociation of Protein Complexes in a Nuclear Body in Living Cells
,”
Nat. Commun.
,
3
, p.
866
.
38.
Booth-Gauthier
,
E. A.
,
Alcoser
,
T. A.
,
Yang
,
G.
, and
Dahl
,
K. N.
,
2012
, “
Force-Induced Changes in Subnuclear Movement and Rheology
,”
Biophys. J.
,
103
(
12
), pp.
2423
2431
.
39.
Thomas
,
C. H.
,
Collier
,
J. H.
,
Sfeir
,
C. S.
, and
Healy
,
K. E.
,
2002
, “
Engineering Gene Expression and Protein Synthesis by Modulation of Nuclear Shape
,”
Proc. Natl. Acad. Sci.
,
99
(
4
), pp.
1972
1977
.
40.
Heo
,
S.-J.
,
Nerurkar
,
N. L.
,
Baker
,
B. M.
,
Shin
,
J.-W.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2011
, “
Fiber Stretch and Reorientation Modulates Mesenchymal Stem Cell Morphology and Fibrous Gene Expression on Oriented Nanofibrous Microenvironments
,”
Ann. Biomed. Eng.
,
39
(
11
), pp.
2780
2790
.
41.
Guilluy
,
C.
,
Osborne
,
L. D.
,
Van Landeghem
,
L.
,
Sharek
,
L.
,
Superfine
,
R.
,
Garcia-Mata
,
R.
, and
Burridge
,
K.
,
2014
, “
Isolated Nuclei Adapt to Force and Reveal a Mechanotransduction Pathway in the Nucleus
,”
Nat. Cell Biol.
,
16
(
4
), pp.
376
381
.
42.
Wang
,
N.
,
Tytell
,
J. D.
, and
Ingber
,
D. E.
,
2009
, “
Mechanotransduction at a Distance: Mechanically Coupling the Extracellular Matrix With the Nucleus
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
75
82
.
43.
Shivashankar
,
G. V.
,
2011
, “
Mechanosignaling to the Cell Nucleus and Gene Regulation
,”
Annu. Rev. Biophys.
,
40
, pp.
361
378
.
44.
Martins
,
R. P.
,
Finan
,
J. D.
,
Guilak
,
F.
, and
Lee
,
D. A.
,
2012
, “
Mechanical Regulation of Nuclear Structure and Function
,”
Annu. Rev. Biomed. Eng.
,
14
, pp.
431
455
.
45.
Fedorchak
,
G. R.
,
Kaminski
,
A.
, and
Lammerding
,
J.
,
2014
, “
Cellular Mechanosensing: Getting to the Nucleus of It All
,”
Prog. Biophys. Mol. Biol.
,
115
(
2–3
), pp.
76
92
.
46.
Osmanagic-Myers
,
S.
,
Dechat
,
T.
, and
Foisner
,
R.
,
2015
, “
Lamins at the Crossroads of Mechanosignaling
,”
Genes Dev.
,
29
(
3
), pp.
225
237
.
47.
Uzer
,
G.
,
Fuchs
,
R. K.
,
Rubin
,
J.
, and
Thompson
,
W. R.
,
2016
, “
Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage
,”
Stem Cells
,
34
(
6
), pp.
1455
1463
.
48.
Navarro
,
A. P.
,
Collins
,
M. A.
, and
Folker
,
E. S.
,
2016
, “
The Nucleus Is a Conserved Mechanosensation and Mechanoresponse Organelle
,”
Cytoskeleton
,
73
(
2
), pp.
59
67
.
49.
Graham
,
D. M.
, and
Burridge
,
K.
,
2016
, “
Mechanotransduction and Nuclear Function
,”
Curr. Opin. Cell Biol.
,
40
, pp.
98
105
.
50.
Belaadi
,
N.
,
Aureille
,
J.
, and
Guilluy
,
C.
,
2016
, “
Under Pressure: Mechanical Stress Management in the Nucleus
,”
Cells
,
5
(
2
), p.
27
.
51.
Gruenbaum
,
Y.
, and
Foisner
,
R.
,
2015
, “
Lamins: Nuclear Intermediate Filament Proteins With Fundamental Functions in Nuclear Mechanics and Genome Regulation
,”
Annu. Rev. Biochem.
,
84
, pp.
131
164
.
52.
Davidson
,
P. M.
, and
Lammerding
,
J.
,
2014
, “
Broken Nuclei: Lamins, Nuclear Mechanics, and Disease
,”
Trends Cell Biol.
,
24
(
4
), pp.
247
256
.
53.
Shimi
,
T.
,
Pfleghaar
,
K.
,
Kojima
,
S.
,
Pack
,
C.-G.
,
Solovei
,
I.
,
Goldman
,
A. E.
,
Adam
,
S. A.
,
Shumaker
,
D. K.
,
Kinjo
,
M.
,
Cremer
,
T.
, and
Goldman
,
R. D.
,
2008
, “
The A- and B-Type Nuclear Lamin Networks: Microdomains Involved in Chromatin Organization and Transcription
,”
Genes Dev.
,
22
(
24
), pp.
3409
3421
.
54.
Broers
,
J. L. V.
,
Peeters
,
E. A. G.
,
Kuijpers
,
H. J. H.
,
Endert
,
J.
,
Bouten
,
C. V. C.
,
Oomens
,
C. W. J.
,
Baaijens
,
F. P. T.
, and
Ramaekers
,
F. C. S.
,
2004
, “
Decreased Mechanical Stiffness in LMNA−/− Cells Is Caused by Defective Nucleo-Cytoskeletal Integrity: Implications for the Development of Laminopathies
,”
Hum. Mol. Genet.
,
13
(
21
), pp.
2567
2580
.
55.
Broers
,
J. L. V.
,
Ramaekers
,
F. C. S.
,
Bonne
,
G.
,
Yaou
,
R. B.
, and
Hutchison
,
C. J.
,
2006
, “
Nuclear Lamins: Laminopathies and Their Role in Premature Ageing
,”
Physiol. Rev.
,
86
(
3
), pp.
967
1008
.
56.
Swift
,
J.
,
Ivanovska
,
I. L.
,
Buxboim
,
A.
,
Harada
,
T.
,
Dingal
,
P. C. D. P.
,
Pinter
,
J.
,
Pajerowski
,
J. D.
,
Spinler
,
K. R.
,
Shin
,
J.-W.
,
Tewari
,
M.
,
Rehfeldt
,
F.
,
Speicher
,
D. W.
, and
Discher
,
D. E.
,
2013
, “
Nuclear Lamin-A Scales With Tissue Stiffness and Enhances Matrix-Directed Differentiation
,”
Science
,
341
(
6149
), p.
1240104
.
57.
Buxboim
,
A.
,
Swift
,
J.
,
Irianto
,
J.
,
Spinler
,
K. R.
,
Dingal
,
P. C. D. P.
,
Athirasala
,
A.
,
Kao
,
Y.-R. C.
,
Cho
,
S.
,
Harada
,
T.
,
Shin
,
J.-W.
, and
Discher
,
D. E.
,
2014
, “
Matrix Elasticity Regulates Lamin-A,C Phosphorylation and Turnover With Feedback to Actomyosin
,”
Curr. Biol.
,
24
(
16
), pp.
1909
1917
.
58.
Ihalainen
,
T. O.
,
Aires
,
L.
,
Herzog
,
F. A.
,
Schwartlander
,
R.
,
Moeller
,
J.
, and
Vogel
,
V.
,
2015
, “
Differential Basal-to-Apical Accessibility of Lamin A/C Epitopes in the Nuclear Lamina Regulated by Changes in Cytoskeletal Tension
,”
Nat. Mater.
,
14
(
12
), pp.
1252
1261
.
59.
Kim
,
D.-H.
, and
Wirtz
,
D.
,
2015
, “
Cytoskeletal Tension Induces the Polarized Architecture of the Nucleus
,”
Biomaterials
,
48
, pp.
161
172
.
60.
Machowska
,
M.
,
Piekarowicz
,
K.
, and
Rzepecki
,
R.
,
2015
, “
Regulation of Lamin Properties and Functions: Does Phosphorylation Do It All?
,”
Open Biol.
,
5
(
11
), p.
150094
.
61.
Lammerding
,
J.
,
Fong
,
L. G.
,
Ji
,
J. Y.
,
Reue
,
K.
,
Stewart
,
C. L.
,
Young
,
S. G.
, and
Lee
,
R. T.
,
2006
, “
Lamins A and C But Not Lamin B1 Regulate Nuclear Mechanics
,”
J. Biol. Chem.
,
281
(
35
), pp.
25768
25780
.
62.
Taniura
,
H.
,
Glass
,
C.
, and
Gerace
,
L.
,
1995
, “
A Chromatin Binding Site in the Tail Domain of Nuclear Lamins That Interacts With Core Histones
,”
J. Cell Biol.
,
131
(
1
), pp.
33
44
.
63.
Wilson
,
K. L.
, and
Foisner
,
R.
,
2010
, “
Lamin-Binding Proteins
,”
Cold Spring Harbor Perspect. Biol.
,
2
(
4
), p.
a000554
.
64.
Lammerding
,
J.
,
Schulze
,
P. C.
,
Takahashi
,
T.
,
Kozlov
,
S.
,
Sullivan
,
T.
,
Kamm
,
R. D.
,
Stewart
,
C. L.
, and
Lee
,
R. T.
,
2004
, “
Lamin A/C Deficiency Causes Defective Nuclear Mechanics and Mechanotransduction
,”
J. Clin. Invest.
,
113
(
3
), pp.
370
378
.
65.
Cupesi
,
M.
,
Yoshioka
,
J.
,
Gannon
,
J.
,
Kudinova
,
A.
,
Stewart
,
C. L.
, and
Lammerding
,
J.
,
2010
, “
Attenuated Hypertrophic Response to Pressure Overload in a Lamin A/C Haploinsufficiency Mouse
,”
J. Mol. Cell. Cardiol.
,
48
(
6
), pp.
1290
1297
.
66.
Akter
,
R.
,
Rivas
,
D.
,
Geneau
,
G.
,
Drissi
,
H.
, and
Duque
,
G.
,
2009
, “
Effect of Lamin A/C Knockdown on Osteoblast Differentiation and Function
,”
J. Bone Miner. Res.
,
24
(
2
), pp.
283
293
.
67.
Mao
,
X.
,
Gavara
,
N.
, and
Song
,
G.
,
2015
, “
Nuclear Mechanics and Stem Cell Differentiation
,”
Stem Cell Rev.
,
11
(
6
), pp.
804
812
.
68.
Capell
,
B. C.
, and
Collins
,
F. S.
,
2006
, “
Human Laminopathies: Nuclei Gone Genetically Awry
,”
Nat. Rev. Genet.
,
7
(
12
), pp.
940
952
.
69.
Burke
,
B.
, and
Stewart
,
C. L.
,
2006
, “
The Laminopathies: The Functional Architecture of the Nucleus and Its Contribution to Disease
,”
Annu. Rev. Genomics Hum. Genet.
,
7
, pp.
369
405
.
70.
McGinty
,
R. K.
, and
Tan
,
S.
,
2015
, “
Nucleosome Structure and Function
,”
Chem. Rev.
,
115
(
6
), pp.
2255
2273
.
71.
Cremer
,
T.
, and
Cremer
,
M.
,
2010
, “
Chromosome Territories
,”
Cold Spring Harbor Perspect. Biol.
,
2
(
3
), p.
a003889
.
72.
Woodcock
,
C. L.
, and
Ghosh
,
R. P.
,
2010
, “
Chromatin Higher-Order Structure and Dynamics
,”
Cold Spring Harbor Perspect. Biol.
,
2
(
5
), p.
a000596
.
73.
Phillips-Cremins
,
J. E.
,
2014
, “
Unraveling Architecture of the Pluripotent Genome
,”
Curr. Opin. Cell Biol.
,
28
, pp.
96
104
.
74.
Parada
,
L. A.
,
McQueen
,
P. G.
, and
Misteli
,
T.
,
2004
, “
Tissue-Specific Spatial Organization of Genomes
,”
Genome Biol.
,
5
, p.
R44
.
75.
Bolzer
,
A.
,
Kreth
,
G.
,
Solovei
,
I.
,
Koehler
,
D.
,
Saracoglu
,
K.
,
Fauth
,
C.
,
Müller
,
S.
,
Eils
,
R.
,
Cremer
,
C.
,
Speicher
,
M. R.
, and
Cremer
,
T.
,
2005
, “
Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes
,”
PLoS Biol.
,
3
(
5
), p.
e157
.
76.
Hübner
,
M. R.
, and
Spector
,
D. L.
,
2010
, “
Chromatin Dynamics
,”
Annu. Rev. Biophys.
,
39
, pp.
471
489
.
77.
Guelen
,
L.
,
Pagie
,
L.
,
Brasset
,
E.
,
Meuleman
,
W.
,
Faza
,
M. B.
,
Talhout
,
W.
,
Eussen
,
B. H.
,
de Klein
,
A.
,
Wessels
,
L.
,
de Laat
,
W.
, and
van Steensel
,
B.
,
2008
, “
Domain Organization of Human Chromosomes Revealed by Mapping of Nuclear Lamina Interactions
,”
Nature
,
453
(
7197
), pp.
948
951
.
78.
Peric-Hupkes
,
D.
,
Meuleman
,
W.
,
Pagie
,
L.
,
Bruggeman
,
S. W. M.
,
Solovei
,
I.
,
Brugman
,
W.
,
Gräf
,
S.
,
Flicek
,
P.
,
Kerkhoven
,
R. M.
,
van Lohuizen
,
M.
,
Reinders
,
M.
,
Wessels
,
L.
, and
van Steensel
,
B.
,
2010
, “
Molecular Maps of the Reorganization of Genome-Nuclear Lamina Interactions During Differentiation
,”
Mol. Cell
,
38
(
4
), pp.
603
613
.
79.
Lund
,
E.
,
Oldenburg
,
A. R.
,
Delbarre
,
E.
,
Freberg
,
C. T.
,
Duband-Goulet
,
I.
,
Eskeland
,
R.
,
Buendia
,
B.
, and
Collas
,
P.
,
2013
, “
Lamin A/C-Promoter Interactions Specify Chromatin State-Dependent Transcription Outcomes
,”
Genome Res.
,
23
(
10
), pp.
1580
1589
.
80.
Demmerle
,
J.
,
Koch
,
A. J.
, and
Holaska
,
J. M.
,
2013
, “
Emerin and Histone Deacetylase 3 (HDAC3) Cooperatively Regulate Expression and Nuclear Positions of MyoD, Myf5, and Pax7 Genes During Myogenesis
,”
Chromosome Res.
,
21
(
8
), pp.
765
779
.
81.
Misteli
,
T.
,
2007
, “
Beyond the Sequence: Cellular Organization of Genome Function
,”
Cell
,
128
(
4
), pp.
787
800
.
82.
Crisp
,
M.
,
Liu
,
Q.
,
Roux
,
K.
,
Rattner
,
J. B.
,
Shanahan
,
C.
,
Burke
,
B.
,
Stahl
,
P. D.
, and
Hodzic
,
D.
,
2006
, “
Coupling of the Nucleus and Cytoplasm: Role of the LINC Complex
,”
J. Cell Biol.
,
172
(
1
), pp.
41
53
.
83.
Chang
,
W.
,
Worman
,
H. J.
, and
Gundersen
,
G. G.
,
2015
, “
Accessorizing and Anchoring the LINC Complex for Multifunctionality
,”
J. Cell Biol.
,
208
(
1
), pp.
11
22
.
84.
Rothballer
,
A.
, and
Kutay
,
U.
,
2013
, “
The Diverse Functional LINCs of the Nuclear Envelope to the Cytoskeleton and Chromatin
,”
Chromosoma
,
122
(
5
), pp.
415
429
.
85.
Borrego-Pinto
,
J.
,
Jegou
,
T.
,
Osorio
,
D. S.
,
Auradé
,
F.
,
Gorjánácz
,
M.
,
Koch
,
B.
,
Mattaj
,
I. W.
, and
Gomes
,
E. R.
,
2012
, “
Samp1 Is a Component of TAN Lines and Is Required for Nuclear Movement
,”
J. Cell Sci.
,
125
(
Pt. 5
), pp.
1099
1105
.
86.
Kutscheidt
,
S.
,
Zhu
,
R.
,
Antoku
,
S.
,
Luxton
,
G. W. G.
,
Stagljar
,
I.
,
Fackler
,
O. T.
, and
Gundersen
,
G. G.
,
2014
, “
FHOD1 Interaction With Nesprin-2G Mediates TAN Line Formation and Nuclear Movement
,”
Nat. Cell Biol.
,
16
(
7
), pp.
708
715
.
87.
Bone
,
C. R.
,
Tapley
,
E. C.
,
Gorjánácz
,
M.
, and
Starr
,
D. A.
,
2014
, “
The Caenorhabditis Elegans SUN Protein UNC-84 Interacts With Lamin to Transfer Forces From the Cytoplasm to the Nucleoskeleton During Nuclear Migration
,”
Mol. Biol. Cell
,
25
(
18
), pp.
2853
2865
.
88.
Antoku
,
S.
,
Zhu
,
R.
,
Kutscheidt
,
S.
,
Fackler
,
O. T.
, and
Gundersen
,
G. G.
,
2015
, “
Reinforcing the LINC Complex Connection to Actin Filaments: The Role of FHOD1 in TAN Line Formation and Nuclear Movement
,”
Cell Cycle
,
14
(
14
), pp.
2200
2205
.
89.
Kim
,
D.-H.
,
Khatau
,
S. B.
,
Feng
,
Y.
,
Walcott
,
S.
,
Sun
,
S. X.
,
Longmore
,
G. D.
, and
Wirtz
,
D.
,
2012
, “
Actin Cap Associated Focal Adhesions and Their Distinct Role in Cellular Mechanosensing
,”
Sci. Rep.
,
2
, p.
555
.
90.
Luxton
,
G. W. G.
,
Gomes
,
E. R.
,
Folker
,
E. S.
,
Vintinner
,
E.
, and
Gundersen
,
G. G.
,
2010
, “
Linear Arrays of Nuclear Envelope Proteins Harness Retrograde Actin Flow for Nuclear Movement
,”
Science
,
329
(
5994
), pp.
956
959
.
91.
Nagayama
,
K.
,
Yahiro
,
Y.
, and
Matsumoto
,
T.
,
2011
, “
Stress Fibers Stabilize the Position of Intranuclear DNA Through Mechanical Connection With the Nucleus in Vascular Smooth Muscle Cells
,”
FEBS Lett.
,
585
(
24
), pp.
3992
3997
.
92.
Versaevel
,
M.
,
Braquenier
,
J.-B.
,
Riaz
,
M.
,
Grevesse
,
T.
,
Lantoine
,
J.
, and
Gabriele
,
S.
,
2014
, “
Super-Resolution Microscopy Reveals LINC Complex Recruitment at Nuclear Indentation Sites
,”
Sci. Rep.
,
4
, p.
7362
.
93.
Arsenovic
,
P. T.
,
Ramachandran
,
I.
,
Bathula
,
K.
,
Zhu
,
R.
,
Narang
,
J. D.
,
Noll
,
N. A.
,
Lemmon
,
C. A.
,
Gundersen
,
G. G.
, and
Conway
,
D. E.
,
2016
, “
Nesprin-2G: A Component of the Nuclear LINC Complex, Is Subject to Myosin-Dependent Tension
,”
Biophys. J.
,
110
(
1
), pp.
34
43
.
94.
Nagayama
,
K.
,
Yahiro
,
Y.
, and
Matsumoto
,
T.
,
2013
, “
Apical and Basal Stress Fibers Have Different Roles in Mechanical Regulation of the Nucleus in Smooth Muscle Cells Cultured on a Substrate
,”
Cell. Mol. Bioeng.
,
6
(
4
), pp.
473
481
.
95.
Khatau
,
S. B.
,
Kusuma
,
S.
,
Hanjaya-Putra
,
D.
,
Mali
,
P.
,
Cheng
,
L.
,
Lee
,
J. S. H.
,
Gerecht
,
S.
, and
Wirtz
,
D.
,
2012
, “
The Differential Formation of the LINC-Mediated Perinuclear Actin Cap in Pluripotent and Somatic Cells
,”
PLoS One
,
7
(
5
), p.
e36689
.
96.
Lombardi
,
M. L.
,
Jaalouk
,
D. E.
,
Shanahan
,
C. M.
,
Burke
,
B.
,
Roux
,
K. J.
, and
Lammerding
,
J.
,
2011
, “
The Interaction Between Nesprins and Sun Proteins at the Nuclear Envelope Is Critical for Force Transmission Between the Nucleus and Cytoskeleton
,”
J. Biol. Chem.
,
286
(
30
), pp.
26743
26753
.
97.
Han
,
W. M.
,
Heo
,
S.-J.
,
Driscoll
,
T. P.
,
Smith
,
L. J.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2013
, “
Macro- to Microscale Strain Transfer in Fibrous Tissues Is Heterogeneous and Tissue-Specific
,”
Biophys. J.
,
105
(
3
), pp.
807
817
.
98.
Li
,
Q.
,
Makhija
,
E.
,
Hameed
,
F. M.
, and
Shivashankar
,
G. V.
,
2015
, “
Micropillar Displacements by Cell Traction Forces Are Mechanically Correlated With Nuclear Dynamics
,”
Biochem. Biophys. Res. Commun.
,
461
(
2
), pp.
372
377
.
99.
Driscoll
,
T. P.
,
Cosgrove
,
B. D.
,
Heo
,
S.-J.
,
Shurden
,
Z. E.
, and
Mauck
,
R. L.
,
2015
, “
Cytoskeletal to Nuclear Strain Transfer Regulates YAP Signaling in Mesenchymal Stem Cells
,”
Biophys. J.
,
108
(
12
), pp.
2783
2793
.
100.
Banerjee
,
I.
,
Zhang
,
J.
,
Moore-Morris
,
T.
,
Pfeiffer
,
E.
,
Buchholz
,
K. S.
,
Liu
,
A.
,
Ouyang
,
K.
,
Stroud
,
M. J.
,
Gerace
,
L.
,
Evans
,
S. M.
,
McCulloch
,
A.
, and
Chen
,
J.
,
2014
, “
Targeted Ablation of Nesprin 1 and Nesprin 2 From Murine Myocardium Results in Cardiomyopathy, Altered Nuclear Morphology and Inhibition of the Biomechanical Gene Response
,”
PLoS Genet.
,
10
(
2
), p.
e1004114
.
101.
Chambliss
,
A. B.
,
Khatau
,
S. B.
,
Erdenberger
,
N.
,
Robinson
,
D. K.
,
Hodzic
,
D.
,
Longmore
,
G. D.
, and
Wirtz
,
D.
,
2013
, “
The LINC-Anchored Actin Cap Connects the Extracellular Milieu to the Nucleus for Ultrafast Mechanotransduction
,”
Sci. Rep.
,
3
, p.
1087
.
102.
Lovett
,
D. B.
,
Shekhar
,
N.
,
Nickerson
,
J. A.
,
Roux
,
K. J.
, and
Lele
,
T. P.
,
2013
, “
Modulation of Nuclear Shape by Substrate Rigidity
,”
Cell. Mol. Bioeng.
,
6
(
2
), pp.
230
238
.
103.
Li
,
Y.
,
Lovett
,
D.
,
Zhang
,
Q.
,
Neelam
,
S.
,
Kuchibhotla
,
R. A.
,
Zhu
,
R.
,
Gundersen
,
G. G.
,
Lele
,
T. P.
, and
Dickinson
,
R. B.
,
2015
, “
Moving Cell Boundaries Drive Nuclear Shaping During Cell Spreading
,”
Biophys. J.
,
109
(
4
), pp.
670
686
.
104.
Mazumder
,
A.
, and
Shivashankar
,
G. V.
,
2010
, “
Emergence of a Prestressed Eukaryotic Nucleus During Cellular Differentiation and Development
,”
J. R. Soc. Interface R. Soc.
,
7
(
Suppl. 3
), pp.
S321
330
.
105.
Jean
,
R. P.
,
Gray
,
D. S.
,
Spector
,
A. A.
, and
Chen
,
C. S.
,
2004
, “
Characterization of the Nuclear Deformation Caused by Changes in Endothelial Cell Shape
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
552
558
.
106.
Anno
,
T.
,
Sakamoto
,
N.
, and
Sato
,
M.
,
2012
, “
Role of Nesprin-1 in Nuclear Deformation in Endothelial Cells Under Static and Uniaxial Stretching Conditions
,”
Biochem. Biophys. Res. Commun.
,
424
(
1
), pp.
94
99
.
107.
Sexton
,
T.
,
Schober
,
H.
,
Fraser
,
P.
, and
Gasser
,
S. M.
,
2007
, “
Gene Regulation Through Nuclear Organization
,”
Nat. Struct. Mol. Biol.
,
14
(
11
), pp.
1049
1055
.
108.
Bickmore
,
W. A.
, and
van Steensel
,
B.
,
2013
, “
Genome Architecture: Domain Organization of Interphase Chromosomes
,”
Cell
,
152
(
6
), pp.
1270
1284
.
109.
Amendola
,
M.
, and
van Steensel
,
B.
,
2014
, “
Mechanisms and Dynamics of Nuclear Lamina–Genome Interactions
,”
Curr. Opin. Cell Biol.
,
28
, pp.
61
68
.
110.
Dobrzynska
,
A.
,
Gonzalo
,
S.
,
Shanahan
,
C.
, and
Askjaer
,
P.
,
2016
, “
The Nuclear Lamina in Health and Disease
,”
Nucleus
,
7
(
3
), pp.
233
248
.
111.
Ragoczy
,
T.
,
Bender
,
M. A.
,
Telling
,
A.
,
Byron
,
R.
, and
Groudine
,
M.
,
2006
, “
The Locus Control Region Is Required for Association of the Murine Beta-Globin Locus With Engaged Transcription Factories During Erythroid Maturation
,”
Genes Dev.
,
20
(
11
), pp.
1447
1457
.
112.
Szczerbal
,
I.
,
Foster
,
H. A.
, and
Bridger
,
J. M.
,
2009
, “
The Spatial Repositioning of Adipogenesis Genes Is Correlated With Their Expression Status in a Porcine Mesenchymal Stem Cell Adipogenesis Model System
,”
Chromosoma
,
118
(
5
), pp.
647
663
.
113.
Yao
,
J.
,
Fetter
,
R. D.
,
Hu
,
P.
,
Betzig
,
E.
, and
Tjian
,
R.
,
2011
, “
Subnuclear Segregation of Genes and Core Promoter Factors in Myogenesis
,”
Genes Dev.
,
25
(
6
), pp.
569
580
.
114.
Udagawa
,
K.
, and
Ohyama
,
T.
,
2014
, “
Positions of Pluripotency Genes and Hepatocyte-Specific Genes in the Nucleus Before and After Mouse ES Cell Differentiation
,”
Genet. Mol. Res.
,
13
(
1
), pp.
1979
1988
.
115.
Shachar
,
S.
,
Voss
,
T. C.
,
Pegoraro
,
G.
,
Sciascia
,
N.
, and
Misteli
,
T.
,
2015
, “
Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping
,”
Cell
,
162
(
4
), pp.
911
923
.
116.
Zhao
,
H.
,
Sifakis
,
E. G.
,
Sumida
,
N.
,
Millán-Ariño
,
L.
,
Scholz
,
B. A.
,
Svensson
,
J. P.
,
Chen
,
X.
,
Ronnegren
,
A. L.
,
Mallet de Lima
,
C. D.
,
Varnoosfaderani
,
F. S.
,
Shi
,
C.
,
Loseva
,
O.
,
Yammine
,
S.
,
Israelsson
,
M.
,
Rathje
,
L.-S.
,
Németi
,
B.
,
Fredlund
,
E.
,
Helleday
,
T.
,
Imreh
,
M. P.
, and
Göndör
,
A.
,
2015
, “
PARP1- and CTCF-Mediated Interactions Between Active and Repressed Chromatin at the Lamina Promote Oscillating Transcription
,”
Mol. Cell
,
59
(
6
), pp.
984
997
.
117.
Harr
,
J. C.
,
Luperchio
,
T. R.
,
Wong
,
X.
,
Cohen
,
E.
,
Wheelan
,
S. J.
, and
Reddy
,
K. L.
,
2015
, “
Directed Targeting of Chromatin to the Nuclear Lamina Is Mediated by Chromatin State and A-Type Lamins
,”
J. Cell Biol.
,
208
(
1
), pp.
33
52
.
118.
Ottaviani
,
A.
,
Schluth-Bolard
,
C.
,
Rival-Gervier
,
S.
,
Boussouar
,
A.
,
Rondier
,
D.
,
Foerster
,
A. M.
,
Morere
,
J.
,
Bauwens
,
S.
,
Gazzo
,
S.
,
Callet-Bauchu
,
E.
,
Gilson
,
E.
, and
Magdinier
,
F.
,
2009
, “
Identification of a Perinuclear Positioning Element in Human Subtelomeres That Requires A-Type Lamins and CTCF
,”
EMBO J.
,
28
(
16
), pp.
2428
2436
.
119.
Cui
,
Y.
, and
Bustamante
,
C.
,
2000
, “
Pulling a Single Chromatin Fiber Reveals the Forces That Maintain Its Higher-Order Structure
,”
Proc. Natl. Acad. Sci. U.S.A.
,
97
(
1
), pp.
127
132
.
120.
Yao
,
M.
,
Goult
,
B. T.
,
Chen
,
H.
,
Cong
,
P.
,
Sheetz
,
M. P.
, and
Yan
,
J.
,
2014
, “
Mechanical Activation of Vinculin Binding to Talin Locks Talin in an Unfolded Conformation
,”
Sci. Rep.
,
4
, p.
4610
.
121.
Hu
,
Y.
,
Kireev
,
I.
,
Plutz
,
M.
,
Ashourian
,
N.
, and
Belmont
,
A. S.
,
2009
, “
Large-Scale Chromatin Structure of Inducible Genes: Transcription on a Condensed, Linear Template
,”
J. Cell Biol.
,
185
(
1
), pp.
87
100
.
122.
Marko
,
J. F.
,
2008
, “
Micromechanical Studies of Mitotic Chromosomes
,”
Chromosome Res.
,
16
(
3
), pp.
469
497
.
123.
Therizols
,
P.
,
Illingworth
,
R. S.
,
Courilleau
,
C.
,
Boyle
,
S.
,
Wood
,
A. J.
, and
Bickmore
,
W. A.
,
2014
, “
Chromatin Decondensation Is Sufficient to Alter Nuclear Organization in Embryonic Stem Cells
,”
Science
,
346
(
6214
), pp.
1238
1242
.
124.
Tajik
,
A.
,
Zhang
,
Y.
,
Wei
,
F.
,
Sun
,
J.
,
Jia
,
Q.
,
Zhou
,
W.
,
Singh
,
R.
,
Khanna
,
N.
,
Belmont
,
A. S.
, and
Wang
,
N.
,
2016
, “
Transcription Upregulation Via Force-Induced Direct Stretching of Chromatin
,”
Nat. Mater.
,
15
(
12
), pp.
1287
1296
.
125.
Verschure
,
P. J.
,
van der Kraan
,
I.
,
Manders
,
E. M. M.
,
Hoogstraten
,
D.
,
Houtsmuller
,
A. B.
, and
van Driel
,
R.
,
2003
, “
Condensed Chromatin Domains in the Mammalian Nucleus Are Accessible to Large Macromolecules
,”
EMBO Rep.
,
4
(
9
), pp.
861
866
.
126.
Chen
,
D.
,
Dundr
,
M.
,
Wang
,
C.
,
Leung
,
A.
,
Lamond
,
A.
,
Misteli
,
T.
, and
Huang
,
S.
,
2005
, “
Condensed Mitotic Chromatin Is Accessible to Transcription Factors and Chromatin Structural Proteins
,”
J. Cell Biol.
,
168
(
1
), pp.
41
54
.
127.
Bancaud
,
A.
,
Huet
,
S.
,
Daigle
,
N.
,
Mozziconacci
,
J.
,
Beaudouin
,
J.
, and
Ellenberg
,
J.
,
2009
, “
Molecular Crowding Affects Diffusion and Binding of Nuclear Proteins in Heterochromatin and Reveals the Fractal Organization of Chromatin
,”
EMBO J.
,
28
(
24
), pp.
3785
3798
.
128.
Becker
,
J. S.
,
Nicetto
,
D.
, and
Zaret
,
K. S.
,
2016
, “
H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes
,”
Trends Genet.
,
32
(
1
), pp.
29
41
.
129.
Mattout
,
A.
,
Biran
,
A.
, and
Meshorer
,
E.
,
2011
, “
Global Epigenetic Changes During Somatic Cell Reprogramming to iPS Cells
,”
J. Mol. Cell Biol.
,
3
(
6
), pp.
341
350
.
130.
Soufi
,
A.
,
Donahue
,
G.
, and
Zaret
,
K. S.
,
2012
, “
Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement With the Genome
,”
Cell
,
151
(
5
), pp.
994
1004
.
131.
Towbin
,
B. D.
,
González-Aguilera
,
C.
,
Sack
,
R.
,
Gaidatzis
,
D.
,
Kalck
,
V.
,
Meister
,
P.
,
Askjaer
,
P.
, and
Gasser
,
S. M.
,
2012
, “
Step-Wise Methylation of Histone H3K9 Positions Heterochromatin at the Nuclear Periphery
,”
Cell
,
150
(
5
), pp.
934
947
.
132.
Downing
,
T. L.
,
Soto
,
J.
,
Morez
,
C.
,
Houssin
,
T.
,
Fritz
,
A.
,
Yuan
,
F.
,
Chu
,
J.
,
Patel
,
S.
,
Schaffer
,
D. V.
, and
Li
,
S.
,
2013
, “
Biophysical Regulation of Epigenetic State and Cell Reprogramming
,”
Nat. Mater.
,
12
(
12
), pp.
1154
1162
.
133.
Caiazzo
,
M.
,
Okawa
,
Y.
,
Ranga
,
A.
,
Piersigilli
,
A.
,
Tabata
,
Y.
, and
Lutolf
,
M. P.
,
2016
, “
Defined Three-Dimensional Microenvironments Boost Induction of Pluripotency
,”
Nat. Mater.
,
15
(
3
), pp.
344
352
.
134.
Akhtar
,
A.
, and
Gasser
,
S. M.
,
2007
, “
The Nuclear Envelope and Transcriptional Control
,”
Nat. Rev. Genet.
,
8
(
7
), pp.
507
517
.
135.
Mekhail
,
K.
, and
Moazed
,
D.
,
2010
, “
The Nuclear Envelope in Genome Organization, Expression and Stability
,”
Nat. Rev. Mol. Cell Biol.
,
11
(
5
), pp.
317
328
.
136.
Towbin
,
B. D.
,
Meister
,
P.
, and
Gasser
,
S. M.
,
2009
, “
The Nuclear Envelope: A Scaffold for Silencing?
,”
Curr. Opin. Genet. Dev.
,
19
(
2
), pp.
180
186
.
137.
Jost
,
K. L.
,
Haase
,
S.
,
Smeets
,
D.
,
Schrode
,
N.
,
Schmiedel
,
J. M.
,
Bertulat
,
B.
,
Herzel
,
H.
,
Cremer
,
M.
, and
Cardoso
,
M. C.
,
2011
, “
3D-Image Analysis Platform Monitoring Relocation of Pluripotency Genes During Reprogramming
,”
Nucleic Acids Res.
,
39
(
17
), pp.
e113
e113
.
138.
Zink
,
D.
,
Amaral
,
M. D.
,
Englmann
,
A.
,
Lang
,
S.
,
Clarke
,
L. A.
,
Rudolph
,
C.
,
Alt
,
F.
,
Luther
,
K.
,
Braz
,
C.
,
Sadoni
,
N.
,
Rosenecker
,
J.
, and
Schindelhauer
,
D.
,
2004
, “
Transcription-Dependent Spatial Arrangements of CFTR and Adjacent Genes in Human Cell Nuclei
,”
J. Cell Biol.
,
166
(
6
), pp.
815
825
.
139.
Brown
,
K. E.
,
Baxter
,
J.
,
Graf
,
D.
,
Merkenschlager
,
M.
, and
Fisher
,
A. G.
,
1999
, “
Dynamic Repositioning of Genes in the Nucleus of Lymphocytes Preparing for Cell Division
,”
Mol. Cell
,
3
(
2
), pp.
207
217
.
140.
Reddy
,
K. L.
,
Zullo
,
J. M.
,
Bertolino
,
E.
, and
Singh
,
H.
,
2008
, “
Transcriptional Repression Mediated by Repositioning of Genes to the Nuclear Lamina
,”
Nature
,
452
(
7184
), pp.
243
247
.
141.
Kumaran
,
R. I.
, and
Spector
,
D. L.
,
2008
, “
A Genetic Locus Targeted to the Nuclear Periphery in Living Cells Maintains Its Transcriptional Competence
,”
J. Cell Biol.
,
180
(
1
), pp.
51
65
.
142.
Finlan
,
L. E.
,
Sproul
,
D.
,
Thomson
,
I.
,
Boyle
,
S.
,
Kerr
,
E.
,
Perry
,
P.
,
Ylstra
,
B.
,
Chubb
,
J. R.
, and
Bickmore
,
W. A.
,
2008
, “
Recruitment to the Nuclear Periphery Can Alter Expression of Genes in Human Cells
,”
PLoS Genet
,
4
(
3
), p.
e1000039
.
143.
Gartenberg
,
M. R.
,
Neumann
,
F. R.
,
Laroche
,
T.
,
Blaszczyk
,
M.
, and
Gasser
,
S. M.
,
2004
, “
Sir-Mediated Repression Can Occur Independently of Chromosomal and Subnuclear Contexts
,”
Cell
,
119
(
7
), pp.
955
967
.
144.
Schübeler
,
D.
,
Francastel
,
C.
,
Cimbora
,
D. M.
,
Reik
,
A.
,
Martin
,
D. I.
, and
Groudine
,
M.
,
2000
, “
Nuclear Localization and Histone Acetylation: A Pathway for Chromatin Opening and Transcriptional Activation of the Human Beta-Globin Locus
,”
Genes Dev.
,
14
(
8
), pp.
940
950
.
145.
Chuang
,
C.-H.
,
Carpenter
,
A. E.
,
Fuchsova
,
B.
,
Johnson
,
T.
,
de Lanerolle
,
P.
, and
Belmont
,
A. S.
,
2006
, “
Long-Range Directional Movement of an Interphase Chromosome Site
,”
Curr. Biol.
,
16
(
8
), pp.
825
831
.
146.
Dundr
,
M.
,
Ospina
,
J. K.
,
Sung
,
M.-H.
,
John
,
S.
,
Upender
,
M.
,
Ried
,
T.
,
Hager
,
G. L.
, and
Matera
,
A. G.
,
2007
, “
Actin-Dependent Intranuclear Repositioning of an Active Gene Locus in vivo
,”
J. Cell Biol.
,
179
(
6
), pp.
1095
1103
.
147.
Levi
,
V.
,
Ruan
,
Q.
,
Plutz
,
M.
,
Belmont
,
A. S.
, and
Gratton
,
E.
,
2005
, “
Chromatin Dynamics in Interphase Cells Revealed by Tracking in a Two-Photon Excitation Microscope
,”
Biophys. J.
,
89
(
6
), pp.
4275
4285
.
148.
Mehta
,
I. S.
,
Amira
,
M.
,
Harvey
,
A. J.
, and
Bridger
,
J. M.
,
2010
, “
Rapid Chromosome Territory Relocation by Nuclear Motor Activity in Response to Serum Removal in Primary Human Fibroblasts
,”
Genome Biol.
,
11
, p.
R5
.
149.
Kind
,
J.
,
Pagie
,
L.
,
Ortabozkoyun
,
H.
,
Boyle
,
S.
,
de Vries
,
S. S.
,
Janssen
,
H.
,
Amendola
,
M.
,
Nolen
,
L. D.
,
Bickmore
,
W. A.
, and
van Steensel
,
B.
,
2013
, “
Single-Cell Dynamics of Genome-Nuclear Lamina Interactions
,”
Cell
,
153
(
1
), pp.
178
192
.
150.
Padeken
,
J.
, and
Heun
,
P.
,
2014
, “
Nucleolus and Nuclear Periphery: Velcro for Heterochromatin
,”
Curr. Opin. Cell Biol.
,
28
, pp.
54
60
.
151.
Van Koningsbruggen
,
S.
,
Gierlinski
,
M.
,
Schofield
,
P.
,
Martin
,
D.
,
Barton
,
G. J.
,
Ariyurek
,
Y.
,
den Dunnen
,
J. T.
, and
Lamond
,
A. I.
,
2010
, “
High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains From Most Human Chromosomes Associate With Nucleoli
,”
Mol. Biol. Cell
,
21
(
21
), pp.
3735
3748
.
152.
Németh
,
A.
,
Conesa
,
A.
,
Santoyo-Lopez
,
J.
,
Medina
,
I.
,
Montaner
,
D.
,
Péterfia
,
B.
,
Solovei
,
I.
,
Cremer
,
T.
,
Dopazo
,
J.
, and
Längst
,
G.
,
2010
, “
Initial Genomics of the Human Nucleolus
,”
PLoS Genet.
,
6
(
3
), p.
e1000889
.
153.
Zhang
,
Q.
,
Bethmann
,
C.
,
Worth
,
N. F.
,
Davies
,
J. D.
,
Wasner
,
C.
,
Feuer
,
A.
,
Ragnauth
,
C. D.
,
Yi
,
Q.
,
Mellad
,
J. A.
,
Warren
,
D. T.
,
Wheeler
,
M. A.
,
Ellis
,
J. A.
,
Skepper
,
J. N.
,
Vorgerd
,
M.
,
Schlotter-Weigel
,
B.
,
Weissberg
,
P. L.
,
Roberts
,
R. G.
,
Wehnert
,
M.
, and
Shanahan
,
C. M.
,
2007
, “
Nesprin-1 and -2 Are Involved in the Pathogenesis of Emery Dreifuss Muscular Dystrophy and Are Critical for Nuclear Envelope Integrity
,”
Hum. Mol. Genet.
,
16
(
23
), pp.
2816
2833
.
154.
Makhija
,
E.
,
Jokhun
,
D. S.
, and
Shivashankar
,
G. V.
,
2016
, “
Nuclear Deformability and Telomere Dynamics Are Regulated by Cell Geometric Constraints
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
1
), pp.
E32
40
.
155.
Lammerding
,
J.
,
Hsiao
,
J.
,
Schulze
,
P. C.
,
Kozlov
,
S.
,
Stewart
,
C. L.
, and
Lee
,
R. T.
,
2005
, “
Abnormal Nuclear Shape and Impaired Mechanotransduction in Emerin-Deficient Cells
,”
J. Cell Biol.
,
170
(
5
), pp.
781
791
.
156.
Zwerger
,
M.
,
Jaalouk
,
D. E.
,
Lombardi
,
M. L.
,
Isermann
,
P.
,
Mauermann
,
M.
,
Dialynas
,
G.
,
Herrmann
,
H.
,
Wallrath
,
L. L.
, and
Lammerding
,
J.
,
2013
, “
Myopathic Lamin Mutations Impair Nuclear Stability in Cells and Tissue and Disrupt Nucleo-Cytoskeletal Coupling
,”
Hum. Mol. Genet.
,
22
(
12
), pp.
2335
2349
.
157.
Denais
,
C. M.
,
Gilbert
,
R. M.
,
Isermann
,
P.
,
McGregor
,
A. L.
,
te Lindert
,
M.
,
Weigelin
,
B.
,
Davidson
,
P. M.
,
Friedl
,
P.
,
Wolf
,
K.
, and
Lammerding
,
J.
,
2016
, “
Nuclear Envelope Rupture and Repair During Cancer Cell Migration
,”
Science
,
352
(
6283
), pp.
353
358
.
158.
Raab
,
M.
,
Gentili
,
M.
,
de Belly
,
H.
,
Thiam
,
H. R.
,
Vargas
,
P.
,
Jimenez
,
A. J.
,
Lautenschlaeger
,
F.
,
Voituriez
,
R.
,
Lennon-Duménil
,
A. M.
,
Manel
,
N.
, and
Piel
,
M.
,
2016
, “
ESCRT III Repairs Nuclear Envelope Ruptures During Cell Migration to Limit DNA Damage and Cell Death
,”
Science
,
352
(
6283
), pp.
359
362
.
159.
Bell
,
E. S.
, and
Lammerding
,
J.
,
2016
, “
Causes and Consequences of Nuclear Envelope Alterations in Tumour Progression
,”
Eur. J. Cell Biol.
,
95
(
11
), pp.
449
464
.
160.
Irianto
,
J.
,
Pfeifer
,
C. R.
,
Ivanovska
,
I. L.
,
Swift
,
J.
, and
Discher
,
D. E.
,
2016
, “
Nuclear Lamins in Cancer
,”
Cell. Mol. Bioeng.
,
9
(
2
), pp.
258
267
.
161.
Swift
,
J.
, and
Discher
,
D. E.
,
2014
, “
The Nuclear Lamina Is Mechano-Responsive to ECM Elasticity in Mature Tissue
,”
J. Cell Sci.
,
127
(
14
), pp.
3005
3015
.
162.
Knight
,
M. M.
,
Lee
,
D. A.
, and
Bader
,
D. L.
,
1998
, “
The Influence of Elaborated Pericellular Matrix on the Deformation of Isolated Articular Chondrocytes Cultured in Agarose
,”
Biochim. Biophys. Acta
,
1405
(
1–3
), pp.
67
77
.
163.
Choi
,
J. B.
,
Youn
,
I.
,
Cao
,
L.
,
Leddy
,
H. A.
,
Gilchrist
,
C. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
,
2007
, “
Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationship Among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage
,”
J. Biomech.
,
40
(
12
), pp.
2596
2603
.
164.
Dahl
,
K. N.
,
Scaffidi
,
P.
,
Islam
,
M. F.
,
Yodh
,
A. G.
,
Wilson
,
K. L.
, and
Misteli
,
T.
,
2006
, “
Distinct Structural and Mechanical Properties of the Nuclear Lamina in Hutchinson-Gilford Progeria Syndrome
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
27
), pp.
10271
10276
.
165.
Scaffidi
,
P.
, and
Misteli
,
T.
,
2008
, “
Lamin A-Dependent Misregulation of Adult Stem Cells Associated With Accelerated Ageing
,”
Nat. Cell Biol.
,
10
(
4
), pp.
452
459
.
166.
Verstraeten
,
V. L. R. M.
,
Ji
,
J. Y.
,
Cummings
,
K. S.
,
Lee
,
R. T.
, and
Lammerding
,
J.
,
2008
, “
Increased Mechanosensitivity and Nuclear Stiffness in Hutchinson-Gilford Progeria Cells: Effects of Farnesyltransferase Inhibitors
,”
Aging Cell
,
7
(
3
), pp.
383
393
.
167.
Mounkes
,
L. C.
,
Kozlov
,
S.
,
Hernandez
,
L.
,
Sullivan
,
T.
, and
Stewart
,
C. L.
,
2003
, “
A Progeroid Syndrome in Mice Is Caused by Defects in A-Type Lamins
,”
Nature
,
423
(
6937
), pp.
298
301
.
168.
Hale
,
C. M.
,
Shrestha
,
A. L.
,
Khatau
,
S. B.
,
Stewart-Hutchinson
,
P. J.
,
Hernandez
,
L.
,
Stewart
,
C. L.
,
Hodzic
,
D.
, and
Wirtz
,
D.
,
2008
, “
Dysfunctional Connections Between the Nucleus and the Actin and Microtubule Networks in Laminopathic Models
,”
Biophys. J.
,
95
(
11
), pp.
5462
5475
.
169.
Mehta
,
I. S.
,
Eskiw
,
C. H.
,
Arican
,
H. D.
,
Kill
,
I. R.
, and
Bridger
,
J. M.
,
2011
, “
Farnesyltransferase Inhibitor Treatment Restores Chromosome Territory Positions and Active Chromosome Dynamics in Hutchinson-Gilford Progeria Syndrome Cells
,”
Genome Biol.
,
12
(
8
), p.
R74
.
170.
Shumaker
,
D. K.
,
Dechat
,
T.
,
Kohlmaier
,
A.
,
Adam
,
S. A.
,
Bozovsky
,
M. R.
,
Erdos
,
M. R.
,
Eriksson
,
M.
,
Goldman
,
A. E.
,
Khuon
,
S.
,
Collins
,
F. S.
,
Jenuwein
,
T.
, and
Goldman
,
R. D.
,
2006
, “
Mutant Nuclear Lamin A Leads to Progressive Alterations of Epigenetic Control in Premature Aging
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
23
), pp.
8703
8708
.
171.
Mattout
,
A.
,
Pike
,
B. L.
,
Towbin
,
B. D.
,
Bank
,
E. M.
,
Gonzalez-Sandoval
,
A.
,
Stadler
,
M. B.
,
Meister
,
P.
,
Gruenbaum
,
Y.
, and
Gasser
,
S. M.
,
2011
, “
An EDMD Mutation in C. Elegans Lamin Blocks Muscle-Specific Gene Relocation and Compromises Muscle Integrity
,”
Curr. Biol.
,
21
(
19
), pp.
1603
1614
.
172.
Simon
,
D. N.
,
Zastrow
,
M. S.
, and
Wilson
,
K. L.
,
2010
, “
Direct Actin Binding to A- and B-Type Lamin Tails and Actin Filament Bundling by the Lamin A Tail
,”
Nucleus
,
1
(
3
), pp.
264
272
.
173.
Worman
,
H. J.
, and
Schirmer
,
E. C.
,
2015
, “
Nuclear Membrane Diversity: Underlying Tissue-Specific Pathologies in Disease?
,”
Curr. Opin. Cell Biol.
,
34
, pp.
101
112
.
174.
Heessen
,
S.
, and
Fornerod
,
M.
,
2007
, “
The Inner Nuclear Envelope as a Transcription Factor Resting Place
,”
EMBO Rep.
,
8
(
10
), pp.
914
919
.
175.
Gesson
,
K.
,
Rescheneder
,
P.
,
Skoruppa
,
M. P.
,
von Haeseler
,
A.
,
Dechat
,
T.
, and
Foisner
,
R.
,
2016
, “
A-Type Lamins Bind Both Hetero- and Euchromatin, the Latter Being Regulated by Lamina-Associated Polypeptide 2 Alpha
,”
Genome Res.
,
26
(
4
), pp.
462
473
.
176.
Solovei
,
I.
,
Wang
,
A. S.
,
Thanisch
,
K.
,
Schmidt
,
C. S.
,
Krebs
,
S.
,
Zwerger
,
M.
,
Cohen
,
T. V.
,
Devys
,
D.
,
Foisner
,
R.
,
Peichl
,
L.
,
Herrmann
,
H.
,
Blum
,
H.
,
Engelkamp
,
D.
,
Stewart
,
C. L.
,
Leonhardt
,
H.
, and
Joffe
,
B.
,
2013
, “
LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation
,”
Cell
,
152
(
3
), pp.
584
598
.
177.
Mislow
,
J. M. K.
,
Holaska
,
J. M.
,
Kim
,
M. S.
,
Lee
,
K. K.
,
Segura-Totten
,
M.
,
Wilson
,
K. L.
, and
McNally
,
E. M.
,
2002
, “
Nesprin-1α Self-Associates and Binds Directly to Emerin and Lamin A in vitro
,”
FEBS Lett.
,
525
(
1–3
), pp.
135
140
.
178.
Zhang
,
Q.
,
Ragnauth
,
C. D.
,
Skepper
,
J. N.
,
Worth
,
N. F.
,
Warren
,
D. T.
,
Roberts
,
R. G.
,
Weissberg
,
P. L.
,
Ellis
,
J. A.
, and
Shanahan
,
C. M.
,
2005
, “
Nesprin-2 Is a Multi-Isomeric Protein That Binds Lamin and Emerin at the Nuclear Envelope and Forms a Subcellular Network in Skeletal Muscle
,”
J. Cell Sci.
,
118
(
Pt. 4
), pp.
673
687
.
179.
Neumann
,
S.
,
Schneider
,
M.
,
Daugherty
,
R. L.
,
Gottardi
,
C. J.
,
Eming
,
S. A.
,
Beijer
,
A.
,
Noegel
,
A. A.
, and
Karakesisoglou
,
I.
,
2010
, “
Nesprin-2 Interacts With {Alpha}-Catenin and Regulates Wnt Signaling at the Nuclear Envelope
,”
J. Biol. Chem.
,
285
(
45
), pp.
34932
34938
.
180.
Markiewicz
,
E.
,
Tilgner
,
K.
,
Barker
,
N.
,
van de Wetering
,
M.
,
Clevers
,
H.
,
Dorobek
,
M.
,
Hausmanowa-Petrusewicz
,
I.
,
Ramaekers
,
F. C. S.
,
Broers
,
J. L. V.
,
Blankesteijn
,
W. M.
,
Salpingidou
,
G.
,
Wilson
,
R. G.
,
Ellis
,
J. A.
, and
Hutchison
,
C. J.
,
2006
, “
The Inner Nuclear Membrane Protein Emerin Regulates Beta-Catenin Activity by Restricting Its Accumulation in the Nucleus
,”
EMBO J.
,
25
(
14
), pp.
3275
3285
.
181.
Chang
,
W.
,
Folker
,
E. S.
,
Worman
,
H. J.
, and
Gundersen
,
G. G.
,
2013
, “
Emerin Organizes Actin Flow for Nuclear Movement and Centrosome Orientation in Migrating Fibroblasts
,”
Mol. Biol. Cell
,
24
(
24
), pp.
3869
3880
.
182.
Holaska
,
J. M.
,
Kowalski
,
A. K.
, and
Wilson
,
K. L.
,
2004
, “
Emerin Caps the Pointed End of Actin Filaments: Evidence for an Actin Cortical Network at the Nuclear Inner Membrane
,”
PLoS Biol.
,
2
(
9
), p.
e231
.
183.
Mehta
,
I. S.
,
Elcock
,
L. S.
,
Amira
,
M.
,
Kill
,
I. R.
, and
Bridger
,
J. M.
,
2008
, “
Nuclear Motors and Nuclear Structures Containing A-Type Lamins and Emerin: Is There a Functional Link?
,”
Biochem. Soc. Trans.
,
36
(
Pt. 6
), pp.
1384
1388
.
184.
Eberharter
,
A.
, and
Becker
,
P. B.
,
2002
, “
Histone Acetylation: A Switch Between Repressive and Permissive Chromatin. Second in Review Series on Chromatin Dynamics
,”
EMBO Rep.
,
3
(
3
), pp.
224
229
.
185.
Milon
,
B. C.
,
Cheng
,
H.
,
Tselebrovsky
,
M. V.
,
Lavrov
,
S. A.
,
Nenasheva
,
V. V.
,
Mikhaleva
,
E. A.
,
Shevelyov
,
Y. Y.
, and
Nurminsky
,
D. I.
,
2012
, “
Role of Histone Deacetylases in Gene Regulation at Nuclear Lamina
,”
PLoS One
,
7
(
11
), p.
e49692
.
186.
Zullo
,
J. M.
,
Demarco
,
I. A.
,
Piqué-Regi
,
R.
,
Gaffney
,
D. J.
,
Epstein
,
C. B.
,
Spooner
,
C. J.
,
Luperchio
,
T. R.
,
Bernstein
,
B. E.
,
Pritchard
,
J. K.
,
Reddy
,
K. L.
, and
Singh
,
H.
,
2012
, “
DNA Sequence-Dependent Compartmentalization and Silencing of Chromatin at the Nuclear Lamina
,”
Cell
,
149
(
7
), pp.
1474
1487
.
187.
Jain
,
N.
,
Iyer
,
K. V.
,
Kumar
,
A.
, and
Shivashankar
,
G. V.
,
2013
, “
Cell Geometric Constraints Induce Modular Gene-Expression Patterns Via Redistribution of HDAC3 Regulated by Actomyosin Contractility
,”
Proc. Natl. Acad. Sci.
,
110
(
28
), pp.
11349
11354
.
188.
Li
,
Y.
,
Chu
,
J. S.
,
Kurpinski
,
K.
,
Li
,
X.
,
Bautista
,
D. M.
,
Yang
,
L.
,
Sung
,
K.-L. P.
, and
Li
,
S.
,
2011
, “
Biophysical Regulation of Histone Acetylation in Mesenchymal Stem Cells
,”
Biophys. J.
,
100
(
8
), pp.
1902
1909
.
189.
Demmerle
,
J.
,
Koch
,
A. J.
, and
Holaska
,
J. M.
,
2012
, “
The Nuclear Envelope Protein Emerin Binds Directly to Histone Deacetylase 3 (HDAC3) and Activates HDAC3 Activity
,”
J. Biol. Chem.
,
287
(
26
), pp.
22080
22088
.
190.
Lu
,
W.
,
Schneider
,
M.
,
Neumann
,
S.
,
Jaeger
,
V.-M.
,
Taranum
,
S.
,
Munck
,
M.
,
Cartwright
,
S.
,
Richardson
,
C.
,
Carthew
,
J.
,
Noh
,
K.
,
Goldberg
,
M.
,
Noegel
,
A. A.
, and
Karakesisoglou
,
I.
,
2012
, “
Nesprin Interchain Associations Control Nuclear Size
,”
Cell. Mol. Life Sci.
,
69
(
20
), pp.
3493
3509
.
191.
Taranum
,
S.
,
Sur
,
I.
,
Müller
,
R.
,
Lu
,
W.
,
Rashmi
,
R. N.
,
Munck
,
M.
,
Neumann
,
S.
,
Karakesisoglou
,
I.
, and
Noegel
,
A. A.
,
2012
, “
Cytoskeletal Interactions at the Nuclear Envelope Mediated by Nesprins, Cytoskeletal Interactions at the Nuclear Envelope Mediated by Nesprins
,”
Int. J. Cell Biol.
,
2012
, p.
e736524
.
192.
Ketema
,
M.
,
Wilhelmsen
,
K.
,
Kuikman
,
I.
,
Janssen
,
H.
,
Hodzic
,
D.
, and
Sonnenberg
,
A.
,
2007
, “
Requirements for the Localization of Nesprin-3 at the Nuclear Envelope and Its Interaction With Plectin
,”
J. Cell Sci.
,
120
(
Pt. 19
), pp.
3384
3394
.
193.
Muchir
,
A.
,
van Engelen
,
B. G.
,
Lammens
,
M.
,
Mislow
,
J. M.
,
McNally
,
E.
,
Schwartz
,
K.
, and
Bonne
,
G.
,
2003
, “
Nuclear Envelope Alterations in Fibroblasts From LGMD1B Patients Carrying Nonsense Y259X Heterozygous or Homozygous Mutation in Lamin A/C Gene
,”
Exp. Cell Res.
,
291
(
2
), pp.
352
362
.
194.
Libotte
,
T.
,
Zaim
,
H.
,
Abraham
,
S.
,
Padmakumar
,
V. C.
,
Schneider
,
M.
,
Lu
,
W.
,
Munck
,
M.
,
Hutchison
,
C.
,
Wehnert
,
M.
,
Fahrenkrog
,
B.
,
Sauder
,
U.
,
Aebi
,
U.
,
Noegel
,
A. A.
, and
Karakesisoglou
,
I.
,
2005
, “
Lamin A/C-Dependent Localization of Nesprin-2: A Giant Scaffolder at the Nuclear Envelope
,”
Mol. Biol. Cell
,
16
(
7
), pp.
3411
3424
.
195.
Folker
,
E. S.
,
Ostlund
,
C.
,
Luxton
,
G. W. G.
,
Worman
,
H. J.
, and
Gundersen
,
G. G.
,
2011
, “
Lamin A Variants That Cause Striated Muscle Disease Are Defective in Anchoring Transmembrane Actin-Associated Nuclear Lines for Nuclear Movement
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
1
), pp.
131
136
.
196.
Enyedi
,
B.
, and
Niethammer
,
P.
,
2016
, “
A Case for the Nuclear Membrane as a Mechanotransducer
,”
Cell. Mol. Bioeng.
,
9
(
2
), pp.
247
251
.
197.
Wallrath
,
L. L.
,
Bohnekamp
,
J.
, and
Magin
,
T. M.
,
2016
, “
Cross Talk Between the Cytoplasm and Nucleus During Development and Disease
,”
Curr. Opin. Genet. Dev.
,
37
, pp.
129
136
.
198.
McKee
,
C. T.
,
Raghunathan
,
V. K.
,
Nealey
,
P. F.
,
Russell
,
P.
, and
Murphy
,
C. J.
,
2011
, “
Topographic Modulation of the Orientation and Shape of Cell Nuclei and Their Influence on the Measured Elastic Modulus of Epithelial Cells
,”
Biophys. J.
,
101
(
9
), pp.
2139
2146
.
199.
Pajerowski
,
J. D.
,
Dahl
,
K. N.
,
Zhong
,
F. L.
,
Sammak
,
P. J.
, and
Discher
,
D. E.
,
2007
, “
Physical Plasticity of the Nucleus in Stem Cell Differentiation
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
40
), pp.
15619
15624
.
200.
Stewart-Hutchinson
,
P. J.
,
Hale
,
C. M.
,
Wirtz
,
D.
, and
Hodzic
,
D.
,
2008
, “
Structural Requirements for the Assembly of LINC Complexes and Their Function in Cellular Mechanical Stiffness
,”
Exp. Cell Res.
,
314
(
8
), pp.
1892
1905
.
201.
Münter
,
S.
,
Enninga
,
J.
,
Vazquez-Martinez
,
R.
,
Delbarre
,
E.
,
David-Watine
,
B.
,
Nehrbass
,
U.
, and
Shorte
,
S. L.
,
2006
, “
Actin Polymerisation at the Cytoplasmic Face of Eukaryotic Nuclei
,”
BMC Cell Biol.
,
7
(
23
), p.
23
.
202.
González-Granado
,
J. M.
,
Silvestre-Roig
,
C.
,
Rocha-Perugini
,
V.
,
Trigueros-Motos
,
L.
,
Cibrián
,
D.
,
Morlino
,
G.
,
Blanco-Berrocal
,
M.
,
Osorio
,
F. G.
,
Freije
,
J. M. P.
,
López-Otín
,
C.
,
Sánchez-Madrid
,
F.
, and
Andrés
,
V.
,
2014
, “
Nuclear Envelope Lamin-A Couples Actin Dynamics With Immunological Synapse Architecture and T Cell Activation
,”
Sci. Signalling
,
7
(
322
), p.
ra37
.
203.
Morgan
,
J. T.
,
Pfeiffer
,
E. R.
,
Thirkill
,
T. L.
,
Kumar
,
P.
,
Peng
,
G.
,
Fridolfsson
,
H. N.
,
Douglas
,
G. C.
,
Starr
,
D. A.
, and
Barakat
,
A. I.
,
2011
, “
Nesprin-3 Regulates Endothelial Cell Morphology, Perinuclear Cytoskeletal Architecture, and Flow-Induced Polarization
,”
Mol. Biol. Cell
,
22
(
22
), pp.
4324
4334
.
204.
Chancellor
,
T. J.
,
Lee
,
J.
,
Thodeti
,
C. K.
, and
Lele
,
T.
,
2010
, “
Actomyosin Tension Exerted on the Nucleus Through Nesprin-1 Connections Influences Endothelial Cell Adhesion, Migration, and Cyclic Strain-Induced Reorientation
,”
Biophys. J.
,
99
(
1
), pp.
115
123
.
205.
Ho
,
C. Y.
,
Jaalouk
,
D. E.
,
Vartiainen
,
M. K.
, and
Lammerding
,
J.
,
2013
, “
Lamin A/C and Emerin Regulate MKL1-SRF Activity by Modulating Actin Dynamics
,”
Nature
,
497
(
7450
), pp.
507
511
.
206.
Bertrand
,
A. T.
,
Ziaei
,
S.
,
Ehret
,
C.
,
Duchemin
,
H.
,
Mamchaoui
,
K.
,
Bigot
,
A.
,
Mayer
,
M.
,
Quijano-Roy
,
S.
,
Desguerre
,
I.
,
Lainé
,
J.
,
Ben Yaou
,
R.
,
Bonne
,
G.
, and
Coirault
,
C.
,
2014
, “
Cellular Microenvironments Reveal Defective Mechanosensing Responses and Elevated YAP Signaling in LMNA-Mutated Muscle Precursors
,”
J. Cell Sci.
,
127
(
Pt. 13
), pp.
2873
2884
.
207.
Foster
,
C. R.
,
Robson
,
J. L.
,
Simon
,
W. J.
,
Twigg
,
J.
,
Cruikshank
,
D.
,
Wilson
,
R. G.
, and
Hutchison
,
C. J.
,
2011
, “
The Role of Lamin A in Cytoskeleton Organization in Colorectal Cancer Cells: A Proteomic Investigation
,”
Nucleus
,
2
(
5
), pp.
434
443
.
208.
Chen
,
B.
,
Gilbert
,
L. A.
,
Cimini
,
B. A.
,
Schnitzbauer
,
J.
,
Zhang
,
W.
,
Li
,
G.-W.
,
Park
,
J.
,
Blackburn
,
E. H.
,
Weissman
,
J. S.
,
Qi
,
L. S.
, and
Huang
,
B.
,
2013
, “
Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System
,”
Cell
,
155
(
7
), pp.
1479
1491
.
209.
Godin
,
A. G.
,
Lounis
,
B.
, and
Cognet
,
L.
,
2014
, “
Super-Resolution Microscopy Approaches for Live Cell Imaging
,”
Biophys. J.
,
107
(
8
), pp.
1777
1784
.
210.
Spagnol
,
S. T.
, and
Dahl
,
K. N.
,
2016
, “
Spatially Resolved Quantification of Chromatin Condensation Through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging
,”
PLoS One
,
11
(
1
), p.
e0146244
.
211.
Fedorchak
,
G.
, and
Lammerding
,
J.
,
2016
, “
Cell Microharpooning to Study Nucleo-Cytoskeletal Coupling
,”
Methods Mol. Biol.
,
1411
, pp.
241
254
.
212.
Rodriguez
,
M. L.
,
McGarry
,
P. J.
, and
Sniadecki
,
N. J.
,
2013
, “
Review on Cell Mechanics: Experimental and Modeling Approaches
,”
ASME Appl. Mech. Rev.
,
65
(
6
), p.
060801
.
213.
Mak
,
M.
,
Kim
,
T.
,
Zaman
,
M. H.
, and
Kamm
,
R. D.
,
2015
, “
Multiscale Mechanobiology: Computational Models for Integrating Molecules to Multicellular Systems
,”
Integr. Biol. Quant. Biosci. Nano Macro
,
7
(
10
), pp.
1093
1108
.
214.
Nava
,
M. M.
,
Raimondi
,
M. T.
, and
Pietrabissa
,
R.
,
2014
, “
Bio-Chemo-Mechanical Models for Nuclear Deformation in Adherent Eukaryotic Cells
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
929
943
.
215.
Shemesh
,
T.
,
Geiger
,
B.
,
Bershadsky
,
A. D.
, and
Kozlov
,
M. M.
,
2005
, “
Focal Adhesions as Mechanosensors: A Physical Mechanism
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
35
), pp.
12383
12388
.
216.
Chan
,
C. E.
, and
Odde
,
D. J.
,
2008
, “
Traction Dynamics of Filopodia on Compliant Substrates
,”
Science
,
322
(
5908
), pp.
1687
1691
.
217.
Hytönen
,
V. P.
, and
Vogel
,
V.
,
2008
, “
How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism
,”
PLoS Comput. Biol.
,
4
(
2
), p.
e24
.
218.
Paszek
,
M. J.
,
Boettiger
,
D.
,
Weaver
,
V. M.
, and
Hammer
,
D. A.
,
2009
, “
Integrin Clustering Is Driven by Mechanical Resistance From the Glycocalyx and the Substrate
,”
PLoS Comput. Biol.
,
5
(
12
), p.
e1000604
.
219.
Elosegui-Artola
,
A.
,
Oria
,
R.
,
Chen
,
Y.
,
Kosmalska
,
A.
,
Pérez-González
,
C.
,
Castro
,
N.
,
Zhu
,
C.
,
Trepat
,
X.
, and
Roca-Cusachs
,
P.
,
2016
, “
Mechanical Regulation of a Molecular Clutch Defines Force Transmission and Transduction in Response to Matrix Rigidity
,”
Nat. Cell Biol.
,
18
(
5
), pp.
540
548
.
220.
Cao
,
X.
,
Lin
,
Y.
,
Driscoll
,
T. P.
,
Franco-Barraza
,
J.
,
Cukierman
,
E.
,
Mauck
,
R. L.
, and
Shenoy
,
V. B.
,
2015
, “
A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size
,”
Biophys. J.
,
109
(
9
), pp.
1807
1817
.
221.
Maraldi
,
M.
, and
Garikipati
,
K.
,
2015
, “
The Mechanochemistry of Cytoskeletal Force Generation
,”
Biomech. Model. Mechanobiol.
,
14
(
1
), pp.
59
72
.
222.
Ronan
,
W.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
McGarry
,
J. P.
,
2013
, “
Cellular Contractility and Substrate Elasticity: A Numerical Investigation of the Actin Cytoskeleton and Cell Adhesion
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
417
435
.
223.
Jamali
,
Y.
,
Jamali
,
T.
, and
Mofrad
,
M. R. K.
,
2013
, “
An Agent Based Model of Integrin Clustering: Exploring the Role of Ligand Clustering, Integrin Homo-Oligomerization, Integrin–Ligand Affinity, Membrane Crowdedness and Ligand Mobility
,”
J. Comput. Phys.
,
244
, pp.
264
278
.
224.
Zemel
,
A.
,
Rehfeldt
,
F.
,
Brown
,
A. E. X.
,
Discher
,
D. E.
, and
Safran
,
S. A.
,
2010
, “
Optimal Matrix Rigidity for Stress Fiber Polarization in Stem Cells
,”
Nat. Phys.
,
6
(
6
), pp.
468
473
.
225.
Gouget
,
C. L. M.
,
Hwang
,
Y.
, and
Barakat
,
A. I.
,
2016
, “
Model of Cellular Mechanotransduction Via Actin Stress Fibers
,”
Biomech. Model. Mechanobiol.
,
15
(
2
), pp.
331
344
.
226.
Kang
,
J.
,
Puskar
,
K. M.
,
Ehrlicher
,
A. J.
,
LeDuc
,
P. R.
, and
Schwartz
,
R. S.
,
2015
, “
Structurally Governed Cell Mechanotransduction Through Multiscale Modeling
,”
Sci. Rep.
,
5
, p.
8622
.
227.
De Santis
,
G.
,
Lennon
,
A. B.
,
Boschetti
,
F.
,
Verhegghe
,
B.
,
Verdonck
,
P.
, and
Prendergast
,
P. J.
,
2011
, “
How Can Cells Sense the Elasticity of a Substrate? An Analysis Using a Cell Tensegrity Model
,”
Eur. Cell. Mater.
,
22
, pp.
202
213
.
228.
Kim
,
T.
,
Hwang
,
W.
,
Lee
,
H.
, and
Kamm
,
R. D.
,
2009
, “
Computational Analysis of Viscoelastic Properties of Crosslinked Actin Networks
,”
PLoS Comput. Biol.
,
5
(
7
), p.
e1000439
.
229.
Huisman
,
E. M.
,
van Dillen
,
T.
,
Onck
,
P. R.
, and
Van der Giessen
,
E.
,
2007
, “
Three-Dimensional Cross-Linked F-Actin Networks: Relation Between Network Architecture and Mechanical Behavior
,”
Phys. Rev. Lett.
,
99
(
20
), p.
208103
.
230.
Wang
,
S.
, and
Wolynes
,
P. G.
,
2012
, “
Active Contractility in Actomyosin Networks
,”
Proc. Natl. Acad. Sci.
,
109
(
17
), pp.
6446
6451
.
231.
Alvarado
,
J.
,
Sheinman
,
M.
,
Sharma
,
A.
,
MacKintosh
,
F. C.
, and
Koenderink
,
G. H.
,
2013
, “
Molecular Motors Robustly Drive Active Gels to a Critically Connected State
,”
Nat. Phys.
,
9
(
9
), pp.
591
597
.
232.
Åström
,
J. A.
,
Kumar
,
P. B. S.
,
Vattulainen
,
I.
, and
Karttunen
,
M.
,
2008
, “
Strain Hardening, Avalanches, and Strain Softening in Dense Cross-Linked Actin Networks
,”
Phys. Rev. E
,
77
(
5
), p.
051913
.
233.
Zeng
,
Y.
,
Yip
,
A. K.
,
Teo
,
S.-K.
, and
Chiam
,
K.-H.
,
2012
, “
A Three-Dimensional Random Network Model of the Cytoskeleton and Its Role in Mechanotransduction and Nucleus Deformation
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
49
59
.
234.
Zemel
,
A.
,
2015
, “
Active Mechanical Coupling Between the Nucleus, Cytoskeleton and the Extracellular Matrix, and the Implications for Perinuclear Actomyosin Organization
,”
Soft Matter
,
11
(
12
), pp.
2353
2363
.
235.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J.-J.
,
2002
, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
,
35
(
2
), pp.
177
187
.
236.
Ferko
,
M. C.
,
Bhatnagar
,
A.
,
Garcia
,
M. B.
, and
Butler
,
P. J.
,
2007
, “
Finite-Element Stress Analysis of a Multicomponent Model of Sheared and Focally Adhered Endothelial Cells
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
208
223
.
237.
Slomka
,
N.
, and
Gefen
,
A.
,
2010
, “
Confocal Microscopy-Based Three-Dimensional Cell-Specific Modeling for Large Deformation Analyses in Cellular Mechanics
,”
J. Biomech.
,
43
(
9
), pp.
1806
1816
.
238.
Jean
,
R. P.
,
Chen
,
C. S.
, and
Spector
,
A. A.
,
2005
, “
Finite-Element Analysis of the Adhesion-Cytoskeleton-Nucleus Mechanotransduction Pathway During Endothelial Cell Rounding: Axisymmetric Model
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
594
600
.
239.
Dahl
,
K. N.
,
Kahn
,
S. M.
,
Wilson
,
K. L.
, and
Discher
,
D. E.
,
2004
, “
The Nuclear Envelope Lamina Network Has Elasticity and a Compressibility Limit Suggestive of a Molecular Shock Absorber
,”
J. Cell Sci.
,
117
(
Pt. 20
), pp.
4779
4786
.
240.
Tessier
,
F.
,
Boal
,
D. H.
, and
Discher
,
D. E.
,
2003
, “
Networks With Fourfold Connectivity in Two Dimensions
,”
Phys. Rev. E
,
67
(
1
), p.
011903
.
241.
Funkhouser
,
C. M.
,
Sknepnek
,
R.
,
Shimi
,
T.
,
Goldman
,
A. E.
,
Goldman
,
R. D.
, and
Olvera de la Cruz
,
M.
,
2013
, “
Mechanical Model of Blebbing in Nuclear Lamin Meshworks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
9
), pp.
3248
3253
.
242.
Arya
,
G.
, and
Schlick
,
T.
,
2006
, “
Role of Histone Tails in Chromatin Folding Revealed by a Mesoscopic Oligonucleosome Model
,”
Proc. Natl. Acad. Sci.
,
103
(
44
), pp.
16236
16241
.
243.
Cocco
,
S.
,
Marko
,
J. F.
,
Monasson
,
R.
,
Sarkar
,
A.
, and
Yan
,
J.
,
2003
, “
Force-Extension Behavior of Folding Polymers
,”
Eur. Phys. J. E Soft Matter
,
10
(
3
), pp.
249
263
.
244.
Barbieri
,
M.
,
Chotalia
,
M.
,
Fraser
,
J.
,
Lavitas
,
L.-M.
,
Dostie
,
J.
,
Pombo
,
A.
, and
Nicodemi
,
M.
,
2012
, “
Complexity of Chromatin Folding Is Captured by the Strings and Binders Switch Model
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
40
), pp.
16173
16178
.
245.
Marenduzzo
,
D.
,
Micheletti
,
C.
, and
Cook
,
P. R.
,
2006
, “
Entropy-Driven Genome Organization
,”
Biophys. J.
,
90
(
10
), pp.
3712
3721
.
246.
Carrero
,
G.
,
Hendzel
,
M. J.
, and
de Vries
,
G.
,
2006
, “
Modelling the Compartmentalization of Splicing Factors
,”
J. Theor. Biol.
,
239
(
3
), pp.
298
312
.
247.
Stricker
,
J.
,
Sabass
,
B.
,
Schwarz
,
U. S.
, and
Gardel
,
M. L.
,
2010
, “
Optimization of Traction Force Microscopy for Micron-Sized Focal Adhesions
,”
J. Phys. Condens. Matter Inst. Phys. J.
,
22
(
19
), p.
194104
.
248.
Lessey
,
E. C.
,
Guilluy
,
C.
, and
Burridge
,
K.
,
2012
, “
From Mechanical Force to RhoA Activation
,”
Biochemistry
,
51
(
38
), pp.
7420
7432
.
249.
Borau
,
C.
,
Kamm
,
R. D.
, and
García-Aznar
,
J. M.
,
2014
, “
A Time-Dependent Phenomenological Model for Cell Mechano-Sensing
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
451
462
.
250.
Étienne
,
J.
,
Fouchard
,
J.
,
Mitrossilis
,
D.
,
Bufi
,
N.
,
Durand-Smet
,
P.
, and
Asnacios
,
A.
,
2015
, “
Cells as Liquid Motors: Mechanosensitivity Emerges From Collective Dynamics of Actomyosin Cortex
,”
Proc. Natl. Acad. Sci.
,
112
(
9
), pp.
2740
2745
.
251.
Moreo
,
P.
,
García-Aznar
,
J. M.
, and
Doblaré
,
M.
,
2008
, “
Modeling Mechanosensing and Its Effect on the Migration and Proliferation of Adherent Cells
,”
Acta Biomater.
,
4
(
3
), pp.
613
621
.
252.
McGarry
,
J. P.
,
Fu
,
J.
,
Yang
,
M. T.
,
Chen
,
C. S.
,
McMeeking
,
R. M.
,
Evans
,
A. G.
, and
Deshpande
,
V. S.
,
2009
, “
Simulation of the Contractile Response of Cells on an Array of Micro-Posts
,”
Philos. Trans. R. Soc. London Math. Phys. Eng. Sci.
,
367
(
1902
), pp.
3477
3497
.
253.
Marcq
,
P.
,
Yoshinaga
,
N.
, and
Prost
,
J.
,
2011
, “
Rigidity Sensing Explained by Active Matter Theory
,”
Biophys. J.
,
101
(
6
), pp.
L33
L35
.
254.
Parameswaran
,
H.
,
Lutchen
,
K. R.
, and
Suki
,
B.
,
2014
, “
A Computational Model of the Response of Adherent Cells to Stretch and Changes in Substrate Stiffness
,”
J. Appl. Physiol.
,
116
(
7
), pp.
825
834
.
255.
Vernerey
,
F. J.
, and
Farsad
,
M.
,
2011
, “
A Constrained Mixture Approach to Mechano-Sensing and Force Generation in Contractile Cells
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1683
1699
.
256.
Milan
,
J. L.
,
Wendling-Mansuy
,
S.
,
Jean
,
M.
, and
Chabrand
,
P.
,
2007
, “
Divided Medium-Based Model for Analyzing the Dynamic Reorganization of the Cytoskeleton During Cell Deformation
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
373
390
.
257.
Milan
,
J.-L.
,
Lavenus
,
S.
,
Pilet
,
P.
,
Louarn
,
G.
,
Wendling
,
S.
,
Heymann
,
D.
,
Layrolle
,
P.
, and
Chabrand
,
P.
,
2013
, “
Computational Model Combined With in vitro Experiments to Analyse Mechanotransduction During Mesenchymal Stem Cell Adhesion
,”
Eur. Cell. Mater.
,
25
, pp.
97
113
.
258.
Milan
,
J.-L.
,
Manifacier
,
I.
,
Beussman
,
K. M.
,
Han
,
S. J.
,
Sniadecki
,
N. J.
,
About
,
I.
, and
Chabrand
,
P.
,
2016
, “
In Silico CDM Model Sheds Light on Force Transmission in Cell From Focal Adhesions to Nucleus
,”
J. Biomech.
,
49
(
13
), pp.
2625
2634
.
259.
King
,
M. C.
, and
Lusk
,
C. P.
,
2016
, “
A Model for Coordinating Nuclear Mechanics and Membrane Remodeling to Support Nuclear Integrity
,”
Curr. Opin. Cell Biol.
,
41
, pp.
9
17
.
260.
Saunders
,
C. A.
, and
Luxton
,
G. W. G.
,
2016
, “
LINCing Defective Nuclear-Cytoskeletal Coupling and DYT1 Dystonia
,”
Cell. Mol. Bioeng.
,
9
(
2
), pp.
207
216
.
261.
Baker
,
B. M.
, and
Chen
,
C. S.
,
2012
, “
Deconstructing the Third Dimension: How 3D Culture Microenvironments Alter Cellular Cues
,”
J. Cell Sci.
,
125
(
Pt. 13
), pp.
3015
3024
.
262.
Grinnell
,
F.
,
Ho
,
C.-H.
,
Tamariz
,
E.
,
Lee
,
D. J.
, and
Skuta
,
G.
,
2003
, “
Dendritic Fibroblasts in Three-Dimensional Collagen Matrices
,”
Mol. Biol. Cell
,
14
(
2
), pp.
384
395
.
263.
Hakkinen
,
K. M.
,
Harunaga
,
J. S.
,
Doyle
,
A. D.
, and
Yamada
,
K. M.
,
2011
, “
Direct Comparisons of the Morphology, Migration, Cell Adhesions, and Actin Cytoskeleton of Fibroblasts in Four Different Three-Dimensional Extracellular Matrices
,”
Tissue Eng. Part A
,
17
(
5–6
), pp.
713
724
.
264.
Jorgens
,
D. M.
,
Inman
,
J. L.
,
Wojcik
,
M.
,
Robertson
,
C.
,
Palsdottir
,
H.
,
Tsai
,
W.-T.
,
Huang
,
H.
,
Bruni-Cardoso
,
A.
,
López
,
C. S.
,
Bissell
,
M. J.
,
Xu
,
K.
, and
Auer
,
M.
,
2016
, “
Deep Nuclear Invaginations Linked to Cytoskeletal Filaments: Integrated Bioimaging of Epithelial Cells in 3D Culture
,”
J. Cell Sci.
(in press).
265.
Deguchi
,
S.
,
Maeda
,
K.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2005
, “
Flow-Induced Hardening of Endothelial Nucleus as an Intracellular Stress-Bearing Organelle
,”
J. Biomech.
,
38
(
9
), pp.
1751
1759
.
266.
Harada
,
T.
,
Swift
,
J.
,
Irianto
,
J.
,
Shin
,
J.-W.
,
Spinler
,
K. R.
,
Athirasala
,
A.
,
Diegmiller
,
R.
,
Dingal
,
P. C. D. P.
,
Ivanovska
,
I. L.
, and
Discher
,
D. E.
,
2014
, “
Nuclear Lamin Stiffness Is a Barrier to 3D Migration, But Softness Can Limit Survival
,”
J. Cell Biol.
,
204
(
5
), pp.
669
682
.
267.
Balestrini
,
J. L.
,
Chaudhry
,
S.
,
Sarrazy
,
V.
,
Koehler
,
A.
, and
Hinz
,
B.
,
2012
, “
The Mechanical Memory of Lung Myofibroblasts
,”
Integr. Biol. Quant. Biosci. Nano Macro
,
4
(
4
), pp.
410
421
.
268.
Yang
,
C.
,
Tibbitt
,
M. W.
,
Basta
,
L.
, and
Anseth
,
K. S.
,
2014
, “
Mechanical Memory and Dosing Influence Stem Cell Fate
,”
Nat. Mater.
,
13
(
6
), pp.
645
652
.
269.
Heo
,
S.-J.
,
Thorpe
,
S. D.
,
Driscoll
,
T. P.
,
Duncan
,
R. L.
,
Lee
,
D. A.
, and
Mauck
,
R. L.
,
2015
, “
Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells
,”
Sci. Rep.
,
5
, p.
16895
.
270.
Heo
,
S. J.
,
Driscoll
,
T. P.
,
Thorpe
,
S. D.
,
Nerurkar
,
N. L.
,
Baker
,
B. M.
,
Yang
,
M. T.
,
Chen
,
C. S.
,
Lee
,
D. A.
, and
Mauck
,
R. L.
,
2016
, “
Differentiation Alters Stem Cell Nuclear Architecture, Mechanics, and Mechano-sensitivity
,”
eLife
,
5
, p.
e18207
.
271.
Cao
,
X.
,
Moeendarbary
,
E.
,
Isermann
,
P.
,
Davidson
,
P. M.
,
Wang
,
X.
,
Chen
,
M. B.
,
Burkart
,
A. K.
,
Lammerding
,
J.
,
Kamm
,
R. D.
, and
Shenoy
,
V. B.
,
2016
, “
A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration
,”
Biophys. J.,
111
(
7
), pp.
1541
1552
.
You do not currently have access to this content.