Abstract

Mechanically passive exoskeletons may be a practical and affordable solution to meet a growing clinical need for continuous, home-based movement assistance. We designed, fabricated, and preliminarily evaluated the performance of a wearable, passive, cam-driven shoulder exoskeleton (WPCSE) prototype. The novel feature of the WPCSE is a modular spring-cam-wheel module, which generates an assistive force that can be customized to compensate for any proportion of the shoulder elevation moment due to gravity. We performed a benchtop experiment to validate the mechanical output of the WPCSE against our theoretical model. We also conducted a pilot biomechanics study (eight able-bodied subjects) to quantify the effect of a WPCSE prototype on muscle activity and shoulder kinematics during three shoulder movements. The shoulder elevation moment produced by the spring-cam-wheel module alone closely matched the desired theoretical moment. However, when measured from the full WPCSE prototype, the moment was lower (up to 30%) during positive shoulder elevation and higher (up to 120%) during negative shoulder elevation compared to the theoretical moment, due primarily to friction. Even so, a WPCSE prototype, compensating for about 25% of the shoulder elevation moment due to gravity, showed a trend of reducing root-mean-square electromyogram magnitudes of several muscles crossing the shoulder during shoulder elevation and horizontal adduction/abduction movements. Our results also showed that the WPCSE did not constrain or impede shoulder movements during the tested movements. The results provide proof-of-concept evidence that our WPCSE can potentially assist shoulder movements against gravity.

References

1.
Lawrence
,
E. S.
,
Coshall
,
C.
,
Dundas
,
R.
,
Stewart
,
J.
,
Rudd
,
A. G.
,
Howard
,
R.
, and
Wolfe
,
C. D.
,
2001
, “
Estimates of the Prevalence of Acute Stroke Impairments and Disability in a Multiethnic Population
,”
Stroke
,
32
(
6
), pp.
1279
1284
.10.1161/01.STR.32.6.1279
2.
Gerber
,
C.
,
Schneeberger
,
A. G.
,
Beck
,
M.
, and
Schlegel
,
U.
,
1994
, “
Mechanical Strength of Repairs of the Rotator Cuff
,”
J. Bone Jt. Surg.
,
76-B
(
3
), pp.
371
380
.10.1302/0301-620X.76B3.8175836
3.
Crouch
,
D. L.
,
Santago
,
A. C.
, II
,
Plate
,
J. F.
,
Li
,
Z.
, and
Saul
,
K. R.
,
2016
, “
Relationship Between Maximum Isometric Joint Moment and Functional Task Performance in Patients With Brachial Plexus Injury: A Pilot Study
,”
Gait Posture
,
44
, pp.
238
244
.10.1016/j.gaitpost.2015.12.038
4.
Kolb
,
S. J.
, and
Kissel
,
J. T.
,
2015
, “
Spinal Muscular Atrophy
,”
Neurol. Clin.
,
33
(
4
), pp.
831
846
.10.1016/j.ncl.2015.07.004
5.
Sukal
,
T. M.
,
Ellis
,
M. D.
, and
Dewald
,
J. P.
,
2007
, “
Shoulder Abduction-Induced Reductions in Reaching Work Area Following Hemiparetic Stroke: Neuroscientific Implications
,”
Exp. Brain Res.
,
183
(
2
), pp.
215
223
.10.1007/s00221-007-1029-6
6.
Coscia
,
M.
,
Cheung
,
V. C. K.
,
Tropea
,
P.
,
Koenig
,
A.
,
Monaco
,
V.
,
Bennis
,
C.
,
Micera
,
S.
, and
Bonato
,
P.
,
2014
, “
The Effect of Arm Weight Support on Upper Limb Muscle Synergies During Reaching Movements
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
22
.10.1186/1743-0003-11-22
7.
McCabe
,
R. A.
,
Nicholas
,
S. J.
,
Montgomery
,
K. D.
,
Finneran
,
J. J.
, and
McHugh
,
M. P.
,
2005
, “
The Effect of Rotator Cuff Tear Size on Shoulder Strength and Range of Motion
,”
J. Orthop. Sports Phys. Ther.
,
35
(
3
), pp.
130
135
.10.2519/jospt.2005.35.3.130
8.
Collin
,
P.
,
Matsumura
,
N.
,
Lädermann
,
A.
,
Denard
,
P. J.
, and
Walch
,
G.
,
2014
, “
Relationship Between Massive Chronic Rotator Cuff Tear Pattern and Loss of Active Shoulder Range of Motion
,”
J. Shoulder Elbow Surg.
,
23
(
8
), pp.
1195
1202
.10.1016/j.jse.2013.11.019
9.
Rosen
,
J.
,
Perry
,
J. C.
,
Manning
,
N.
,
Burns
,
S.
, and
Hannaford
,
B.
,
2005
, “
The Human Arm Kinematics and Dynamics During Daily Activities - Toward a 7 DOF Upper Limb Powered Exoskeleton
,”
Proceeding of 12th International Conference on Advanced Robotics ICAR
, Seattle, WA, July 18–20, pp.
532
539
.10.1109/ICAR.2005.1507460
10.
Hall
,
P. T.
, and
Crouch
,
D. L.
,
2020
, “
Effect of Continuous, Mechanically Passive, Anti-Gravity Assistance on Kinematics and Muscle Activity During Dynamic Shoulder Elevation
,”
J. Biomech.
,
103
, p.
109685
.10.1016/j.jbiomech.2020.109685
11.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
408
417
.10.1109/TMECH.2007.901934
12.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
ARMin III–Arm Therapy Exoskeleton With an Ergonomic Shoulder Actuation
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
127
142
.10.1155/2009/962956
13.
Roderick
,
S.
,
Liszka
,
M.
, and
Carignan
,
C.
,
2005
, “
Design of an Arm Exoskeleton With Scapula Motion for Shoulder Rehabilitation
,”
Proceedings of 12th International Conference on Advanced Robotics
,
IEEE
, Seattle, WA, July 18–20, pp.
524
531
.10.1109/ICAR.2005.1507459
14.
Frisoli
,
A.
,
Rocchi
,
F.
,
Marcheschi
,
S.
,
Dettori
,
A.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
, “
A New Force-Feedback Arm Exoskeleton for Haptic Interaction in Virtual Environments
,”
Proceeding of First Joint Eurohaptics Conference and Symposium Haptic Interfaces for Virtual Environments and Teleoperator Systems, World Haptics Conference
, Pisa, Italy, Mar. 18–20, pp.
195
201
.10.1109/WHC.2005.15
15.
Park
,
H.
,
Yupeng
,
R.
, and
Li-Qun
,
Z.
,
2008
, “
IntelliArm: An Exoskeleton for Diagnosis and Treatment of Patients With Neurological Impairments
,”
Proceedings of Second IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
, Scottsdale, AZ, Oct. 19–22, pp.
109
114
.10.1109/BIOROB.2008.4762876
16.
Mao
,
Y.
,
Jin
,
X.
,
Dutta
,
G. G.
,
Scholz
,
J. P.
, and
Agrawal
,
S. K.
,
2015
, “
Human Movement Training With a Cable Driven Arm Exoskeleton (CAREX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
1
), pp.
84
92
.10.1109/TNSRE.2014.2329018
17.
Li
,
Z.
,
Chen
,
W.
,
Zhang
,
J.
, and
Bai
,
S.
,
2017
, “
Design and Control of a 4-DOF Cable-Driven Arm Rehabilitation Robot (CARR-4)
,”
Proceedings of IEEE International Conference on Cybernetics and Intelligent Systems and IEEE International Conference on Robotics, Automation and Mechatronics
, Ningbo, China, Nov. 19–24, pp.
581
586
.10.1109/ICCIS.2017.8274842
18.
Rahman
,
T.
,
Sample
,
W.
,
Jayakumar
,
S.
,
King
,
M. M.
,
Wee
,
J. Y.
,
Seliktar
,
R.
,
Alexander
,
M.
,
Scavina
,
M.
, and
Clark
,
A.
,
2006
, “
Passive Exoskeletons for Assisting Limb Movement
,”
J. Rehabil. Res. Dev.
,
43
(
5
), p.
583
.10.1682/JRRD.2005.04.0070
19.
Lucieer
,
P.
, and
Herder
,
J. L.
,
2005
, “
Design of an Adjustable Compensation Mechanism for Use in a Passive Arm Support
,”
ASME
Paper No. DETC2005-85442.10.1115/DETC2005-85442
20.
Sanchez
,
R.
,
Reinkensmeyer
,
D.
,
Shah
,
P.
,
Liu
,
J.
,
Rao
,
S.
,
Smith
,
R.
,
Cramer
,
S.
,
Rahman
,
T.
, and
Bobrow
,
J.
, “
Monitoring Functional Arm Movement for Home-Based Therapy After Stroke
,”
Proceeding of 26th International Conference of the IEEE Engineering in Medicine and Biology Society
, IEEE, San Francisco, CA, Nov. 19–21, pp.
4787
4790
.10.1109/IEMBS.2004.1404325
21.
de Vries
,
A.
,
Murphy
,
M.
,
Könemann
,
R.
,
Kingma
,
I.
, and
de Looze
,
M.
,
2019
, “
The Amount of Support Provided by a Passive Arm Support Exoskeleton in a Range of Elevated Arm Postures
,”
IISE Trans. Occup. Ergon. Hum. Factors
, 7(3–4), pp.
311
321
.10.1080/24725838.2019.1669736
22.
Nussbaum
,
M. A.
,
Lowe
,
B. D.
,
de Looze
,
M.
,
Harris-Adamson
,
C.
, and
Smets
,
M.
,
2019
, “
An Introduction to the Special Issue on Occupational Exoskeletons
,”
IISE Trans. Occup. Ergon. Hum. Factors
,
7
(
3–4
), pp.
153
162
.10.1080/24725838.2019.1709695
23.
Atkins
,
M. S.
,
Baumgarten
,
J. M.
,
Yasuda
,
Y. L.
,
Adkins
,
R.
,
Waters
,
R. L.
,
Leung
,
P.
, and
Requejo
,
P.
,
2008
, “
Mobile Arm Supports: Evidence-Based Benefits and Criteria for Use
,”
J. Spinal Cord Med.
,
31
(
4
), pp.
388
393
.10.1080/10790268.2008.11760741
24.
James
,
W.
, and
Orr
,
J.
,
1984
, “
Upper Limb Weakness in Children With Duchenne Muscular Dystrophy–A Neglected Problem
,”
Prosthet. Orthot. Int.
,
8
(
2
), pp.
111
113
.10.3109/03093648409145360
25.
Sanchez
,
R. J.
,
Liu
,
J.
,
Rao
,
S.
,
Shah
,
P.
,
Smith
,
R.
,
Rahman
,
T.
,
Cramer
,
S. C.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
,
2006
, “
Automating Arm Movement Training Following Severe Stroke: Functional Exercises With Quantitative Feedback in a Gravity-Reduced Environment
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
3
), pp.
378
389
.10.1109/TNSRE.2006.881553
26.
McConville
,
J. T.
,
1981
, “Anthropometric Relationships of Body and Body Segment Moments of Inertia,” Air Force Aerospace Medical Research Laboratory, Aerospace Medical Division, Yellow Springs, OH.
27.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
John Wiley & Sons, Hoboken, NJ
.
28.
Hill
,
P. W.
,
Wolbrecht
,
E. T.
, and
Perry
,
J. C.
,
2019
, “
Gravity Compensation of an Exoskeleton Joint Using Constant-Force Springs
,”
Proceeding of IEEE 16th International Conference on Rehabilitation Robotics
, IEEE, Toronto, ON, Canada, June 24–28, pp.
311
316
.10.1109/ICORR.2019.8779422
29.
Rahman
,
T.
,
Sample
,
W.
,
Seliktar
,
R.
,
Scavina
,
M. T.
,
Clark
,
A. L.
,
Moran
,
K.
, and
Alexander
,
M. A.
,
2007
, “
Design and Testing of a Functional Arm Orthosis in Patients With Neuromuscular Diseases
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
2
), pp.
244
251
.10.1109/TNSRE.2007.897026
30.
McGuire
,
J. R.
, and
Yura
,
J. A.
,
1996
, “Advances in the Analysis and Design of Constant-Torque Springs,”
30th Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center
, Greenbelt, MD, pp.
205
220
.https://ntrs.nasa.gov/citations/19960025610
31.
Asgari
,
M.
,
Hall
,
P. T.
,
Moore
,
B. S.
, and
Crouch
,
D. L.
,
2020
, “
Wearable Shoulder Exoskeleton With Spring-Cam Mechanism for Customizable, Nonlinear Gravity Compensation
,”
Proceedings of 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society
, IEEE, Montreal, QC, Canada, July 20–24, pp.
4926
4929
.10.1109/EMBC44109.2020.9175633
32.
Nelson
,
A. J.
,
Hall
,
P. T.
,
Saul
,
K. R.
, and
Crouch
,
D. L.
,
2020
, “
Effect of Mechanically Passive, Wearable Shoulder Exoskeletons on Muscle Output During Dynamic Upper Extremity Movements: A Computational Simulation Study
,”
J. Appl. Biomech.
,
36
(
2
), pp.
59
67
.10.1123/jab.2018-0369
33.
Tidwell
,
P. H.
,
Bandukwala
,
N.
,
Dhande
,
S. G.
,
Reinholtz
,
C. F.
, and
Webb
,
G.
,
1994
, “Synthesis of Wrapping Cams,”
ASME. J. Mech. Des.
, 116(2), pp.
634
638
.10.1115/1.2919425
34.
Namdari
,
S.
,
Yagnik
,
G.
,
Ebaugh
,
D. D.
,
Nagda
,
S.
,
Ramsey
,
M. L.
,
Williams
,
G. R.
, Jr.
, and
Mehta
,
S.
,
2012
, “
Defining Functional Shoulder Range of Motion for Activities of Daily Living
,”
J. Shoulder Elb. Surg.
,
21
(
9
), pp.
1177
1183
.10.1016/j.jse.2011.07.032
35.
Hanney
,
W. J.
,
Kolber
,
M. J.
, and
Marshall
,
S. J.
,
2011
, “
The Reliability of Clinical Measurements Designed to Quantify Shoulder Mobility
,”
Phys. Ther. Rev.
,
16
(
6
), pp.
413
422
.10.1179/1743288X11Y.0000000023
36.
Hodder
,
J. N.
, and
Keir
,
P. J.
,
2013
, “
Obtaining Maximum Muscle Excitation for Normalizing Shoulder Electromyography in Dynamic Contractions
,”
J Electromyogr. Kinesiol.
,
23
(
5
), pp.
1166
1173
.10.1016/j.jelekin.2013.06.012
37.
Wu
,
G.
,
van der Helm
,
F. C.
,
(DirkJan) Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
38.
Kim
,
S.
,
Nussbaum
,
M. A.
,
Esfahani
,
M. I. M.
,
Alemi
,
M. M.
,
Alabdulkarim
,
S.
, and
Rashedi
,
E.
,
2018
, “
Assessing the Influence of a Passive, Upper Extremity Exoskeletal Vest for Tasks Requiring Arm Elevation: Part I–“Expected” Effects on Discomfort, Shoulder Muscle Activity, and Work Task Performance
,”
Appl. Ergon.
,
70
, pp.
315
322
.10.1016/j.apergo.2018.02.025
39.
Pataky
,
T. C.
,
2010
, “
Generalized n-Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping
,”
J. Biomech.
,
43
(
10
), pp.
1976
1982
.10.1016/j.jbiomech.2010.03.008
40.
Schroeder
,
J. S.
, and
Perry
,
J. C.
,
2017
, “
Development of a Series Wrapping Cam Mechanism for Energy Transfer in Wearable Arm Support Applications
,”
Proceedings of International Conference on Rehabilitation Robotics
,
IEEE
, London, UK, July 17–20, pp.
585
590
.10.1109/ICORR.2017.8009311
41.
Chen
,
D.
,
Yun
,
Y.
, and
Deshpande
,
A. D.
,
2014
, “
Experimental Characterization of Bowden Cable Friction
,”
Proceedings of IEEE International Conference on Robotics and Automation
, IEEE, Hong Kong, China, May 31–June 7, pp.
5927
5933
.10.1109/ICRA.2014.6907732
42.
Schiele
,
A.
,
Letier
,
P.
,
Van Der Linde
,
R.
, and
Van Der Helm
,
F.
,
2006
, “
Bowden Cable Actuator for Force-Feedback Exoskeletons
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, Beijing, China, Oct. 9–15, pp.
3599
3604
.10.1109/IROS.2006.281712
43.
Halder
,
A. M.
,
Itoi
,
E.
, and
An
,
K.-N.
,
2000
, “
Anatomy and Biomechanics of the Shoulder
,”
Orthop. Clin.
,
31
(
2
), pp.
159
176
.10.1016/S0030-5898(05)70138-3
44.
Prange
,
G. B.
,
Jannink
,
M.
,
Stienen
,
A.
,
van der Kooij
,
H.
,
IJzerman
,
M. J.
, and
Hermens
,
H. J.
,
2009
, “
Influence of Gravity Compensation on Muscle Activation Patterns During Different Temporal Phases of Arm Movements of Stroke Patients
,”
Neurorehabil. Neural Repair
,
23
(
5
), pp.
478
485
.10.1177/1545968308328720
45.
Prange
,
G. B.
,
Kallenberg
,
L.
,
Jannink
,
M.
,
Stienen
,
A.
,
van der Kooij
,
H.
,
IJzerman
,
M. J.
, and
Hermens
,
H. J.
,
2009
, “
Influence of Gravity Compensation on Muscle Activity During Reach and Retrieval in Healthy Elderly
,”
J. Electromyogr. Kinesiol.
,
19
(
2
), pp.
e40
e49
.10.1016/j.jelekin.2007.08.001
46.
Hsieh
,
H.
,
Chen
,
D.
,
Chien
,
L.
, and
Lan
,
C.
,
2017
, “
Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2034
2045
.10.1109/TMECH.2017.2717874
47.
Kiguchi
,
K.
,
Rahman
,
M. H.
,
Sasaki
,
M.
, and
Teramoto
,
K.
,
2008
, “
Development of a 3DOF Mobile Exoskeleton Robot for Human Upper-Limb Motion Assist
,”
Robot. Auton. Syst.
,
56
(
8
), pp.
678
691
.10.1016/j.robot.2007.11.007
48.
Whittle
,
J. H.
,
Peters
,
S. E.
,
Manzanero
,
S.
, and
Duke
,
P. F.
,
2020
, “
A Systematic Review of Patient-Reported Outcome Measures Used in Shoulder Instability Research
,”
J. Shoulder Elb. Surg.
,
29
(
2
), pp.
381
391
.10.1016/j.jse.2019.07.001
You do not currently have access to this content.