Abstract

Inverse dynamics methods are commonly used for the biomechanical analysis of human motion. External forces applied on the subject are required as an input data to solve the dynamic equilibrium of the subject. Force platforms measure ground reaction forces and moments (GRF&Ms) but they limit the ecological aspect of experimental conditions. Motion-based GRF&Ms prediction may circumvent this limitation. The current study aims at evaluating the accuracy of an optimization-based GRF&Ms prediction method modified to be applied to the interaction with a moving and/or nonhorizontal structure (MNHS). The main improvement of the method deals with contact detection in such a MNHS. To evaluate the accuracy of the method, 20 subjects performed squats and steps on an instrumented moving structure, measuring both motion and GRF&Ms. The comparison of the root-mean-square error between the predicted and measured GFR&Ms divided by the subjects mass showed a similar order of magnitude than those from the method without the studied modification (0.14 N/kg for antero-posterior forces, 0.29 N/kg for medio lateral forces, 0.61 N/kg for longitudinal forces, 0.06 Nm/kg for frontal moments, 0.13 Nm/kg for sagittal moments, and 0.03 Nm/kg for transverse moments). The results showed the suitability of the method to study human motions for tasks performed on a MNHS.

References

1.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clinical Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
2.
Jung
,
Y.
,
Jung
,
M.
,
Ryu
,
J.
,
Yoon
,
S.
,
Park
,
S.-K.
, and
Koo
,
S.
,
2016
, “
Dynamically Adjustable Foot-Ground Contact Model to Estimate Ground Reaction Force During Walking and running
,”
Gait Posture
,
45
, pp.
62
68
.10.1016/j.gaitpost.2016.01.005
3.
Koopman
,
B.
,
Grootenboer
,
H. J.
, and
de Jongh
,
H. J.
,
1995
, “
An Inverse Dynamics Model for the Analysis, Reconstruction and Prediction of Bipedal Walking
,”
J. Biomech.
,
28
(
11
), pp.
1369
1376
.10.1016/0021-9290(94)00185-7
4.
Karatsidis
,
A.
,
Bellusci
,
G.
,
Schepers
,
H. M.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Veltink
,
P. H.
,
2016
, “
Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture
,”
Sensors (Switzerland)
,
17
(
12
), p.
75
.10.3390/s17010075
5.
Dijkstra
,
E. J.
, and
Gutierrez-Farewik
,
E. M.
,
2015
, “
Computation of Ground Reaction Force Using Zero Moment Point
,”
J. Biomech.
,
48
(
14
), pp.
3776
3781
.10.1016/j.jbiomech.2015.08.027
6.
Oh
,
S. E.
,
Choi
,
A.
, and
Hwan Mun
,
J.
,
2013
, “
Prediction of Ground Reaction Forces During Gait Based on Kinematics and a Neural Network Model
,”
J. Biomech.
,
46
(
14
), pp.
2372
2380
.10.1016/j.jbiomech.2013.07.036
7.
Johnson
,
W. R.
,
Alderson
,
J.
,
Lloyd
,
D.
, and
Mian
,
A.
,
2019
, “
Predicting Athlete Ground Reaction Forces and Moments From Spatio-Temporal Driven CNN Models
,”
IEEE Trans. Biomed. Eng.
,
66
(
3
), pp.
689
694
.10.1109/TBME.2018.2854632
8.
Lim
,
H.
,
Kim
,
B.
, and
Park
,
S.
,
2020
, “
Prediction of Lower Limb Kinetics and Kinematics During Walking by a Single IMU on the Lower Back Using Machine Learning
,”
Sensors (Switzerland)
,
20
(
1
), p.
130
.10.3390/s20010130
9.
Van Hulle
,
R.
,
Schwartz
,
C.
,
Denoël
,
V.
,
Croisier
,
J.-L.
,
Forthomme
,
B.
, and
Brüls
,
O.
,
2020
, “
A Foot/Ground Contact Model for Biomechanical Inverse Dynamics Analysis
,”
J. Biomech.
,
100
, p.
109412
.10.1016/j.jbiomech.2019.109412
10.
Fluit
,
R.
,
Andersen
,
M. S.
,
Kolk
,
S.
,
Verdonschot
,
N.
, and
Koopman
,
H. F.
,
2014
, “
Prediction of Ground Reaction Forces and Moments During Various Activities of Daily Living
,”
J. Biomech.
,
47
(
10
), pp.
2321
2329
.10.1016/j.jbiomech.2014.04.030
11.
Skals
,
S.
,
Jung
,
M. K.
,
Damsgaard
,
M.
, and
Andersen
,
M. S.
,
2017
, “
Prediction of Ground Reaction Forces and Moments During Sports-Related Movements
,”
Multibody Syst. Dyn.
,
39
(
3
), pp.
175
195
.10.1007/s11044-016-9537-4
12.
Muller
,
A.
,
Pontonnier
,
C.
,
Robert-Lachaine
,
X.
,
Dumont
,
G.
, and
Plamondon
,
A.
,
2020
, “
Motion-Based Prediction of External Forces and Moments and Back Loading During Manual Material Handling Tasks
,”
Appl. Ergonom.
,
82
, p.
102935
.10.1016/j.apergo.2019.102935
13.
Muller
,
A.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2020
, “
Motion-Based Prediction of Hands and Feet Contact Efforts During Asymmetric Handling Tasks
,”
IEEE Trans. Biomed. Eng.
,
67
(
2
), pp.
344
352
.10.1109/TBME.2019.2913308
14.
Jung
,
Y.
,
Jung
,
M.
,
Lee
,
K.
, and
Koo
,
S.
,
2014
, “
Ground Reaction Force Estimation Using an Insole-Type Pressure Mat and Joint Kinematics During Walking
,”
J. Biomech.
,
47
(
11
), pp.
2693
2699
.10.1016/j.jbiomech.2014.05.007
15.
Preuss
,
R.
, and
Fung
,
J.
,
2004
, “
A Simple Method to Estimate Force Plate Inertial Components in a Moving Surface
,”
J. Biomech.
,
37
(
8
), pp.
1177
1180
.10.1016/j.jbiomech.2003.12.007
16.
Roberts
,
B. W.
,
Hall
,
J. C.
,
Williams
,
A. D.
,
Rouhani
,
H.
, and
Vette
,
A. H.
,
2019
, “
A Method to Estimate Inertial Properties and Force Plate Inertial Components for Instrumented Platforms
,”
Medical Eng. Phys.
,
66
, pp.
96
101
.10.1016/j.medengphy.2019.02.012
17.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D D'Lima
,
D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
18.
Wu
,
G.
,
Van Der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint motion - Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
19.
Muller
,
A.
,
Germain
,
C.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2015
, “
A Simple Method to Calibrate Kinematical Invariants: Application to Overhead Throwing
,”
33rd International Conference of International Society of Biomechanics in Sports
(
ISBS
), Poitiers, France, June 29–July 1, pp.
2
5
.https://hal.archives-ouvertes.fr/hal-01150814/document
20.
Dumas
,
R.
,
Chèze
,
L.
, and
Verriest
,
J.-P.
,
2007
, “
Adjustments to McConville et al. and Young et al. body Segment Inertial Parameters
,”
J. Biomech.
,
40
(
3
), pp.
543
553
.10.1016/j.jbiomech.2006.02.013
21.
Lu
,
T. W.
, and
O'Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker co Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.10.1016/S0021-9290(98)00158-4
22.
Skogstad
,
S. A.
,
Hovin
,
M.
,
Holm
,
S.
,
Jensenius
,
A. R.
, and
Nymoen
,
K.
,
2013
, “Filtering Motion Capture Data for Real-Time Applications,”
New Interfaces for Musical Expression
, Daejeon, Republic of Korea, May 27–30.https://www.researchgate.net/publication/247159959_Filtering_Motion_Capture_Data_for_Real-Time_Applications
23.
Muller
,
A.
,
Pontonnier
,
C.
,
Puchaud
,
P.
, and
Dumont
,
G.
,
2019
, “
CusToM: A Matlab Toolbox for Musculoskeletal Simulation
,”
J. Open Source Software, Open J.
,
4
(
33
), pp.
927
3
.10.21105/joss.00927
24.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2008
, “
Whole Body Inverse Dynamics Over a Complete Gait Cycle Based Only on Measured Kinematics
,”
J. Biomech.
,
41
(
12
), pp.
2750
2759
.10.1016/j.jbiomech.2008.06.001
25.
Morin
,
P.
,
Muller
,
A.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2021
, “
Studying the Impact of Internal and External Forces Minimization in a Motion-Based External Forces and Moments Prediction Method: Application to Fencing Lunges
,”
ISB 2021-XXVIII Congress of the International Society of Biomechanics
, Stockholm, Sweden, July 25–29, p.
1
.https://hal.inria.fr/hal-03238800/document
26.
Hnat
,
S. K.
,
van Basten
,
B. J.
, and
van den Bogert
,
A. J.
,
2018
, “
Compensation for Inertial and Gravity Effects in a Moving Force Platform
,”
J. Biomech.
,
75
, pp.
96
101
.10.1016/j.jbiomech.2018.05.009
You do not currently have access to this content.