Abstract

Given the functional complexities of soft tissues and organs, it is clear that computational simulations are critical in their understanding and for the rational basis for the development of therapies and replacements. A key aspect of such simulations is accounting for their complex, nonlinear, anisotropic mechanical behaviors. While soft tissue material models have developed to the point of high fidelity, in-silico implementation is typically done using the finite element (FE) method, which remains impractically slow for translational clinical time frames. As a potential path toward addressing the development of high fidelity simulations capable of performing in clinically relevant time frames, we review the use of neural networks (NN) for soft tissue and organ simulation using two approaches. In the first approach, we show how a NN can learn the responses for a detailed meso-structural soft tissue material model. The NN material model not only reproduced the full anisotropic mechanical responses but also demonstrated a considerable efficiency improvement, as it was trained over a range of realizable fibrous structures. In the second approach, we go a step further with the use of a physics-based surrogate model to directly learn the displacement field solution without the need for raw training data or FE simulation datasets. In this approach we utilize a finite element mesh to define the domain and perform the necessary integrations, but not the finite element method (FEM) itself. We demonstrate with this approach, termed neural network finite element (NNFE), results in a trained NNFE model with excellent agreement with the corresponding “ground truth” FE solutions over the entire physiological deformation range on a cuboidal myocardium specimen. More importantly, the NNFE approach provided a significantly decreased computational time for a range of finite element mesh sizes. Specifically, as the FE mesh size increased from 2744 to 175,615 elements, the NNFE computational time increased from 0.1108 s to 0.1393 s, while the “ground truth” FE model increased from 4.541 s to 719.9 s, with the same effective accuracy. These results suggest that NNFE run times are significantly reduced compared with the traditional large-deformation-based finite element solution methods. We then show how a nonuniform rational B-splines (NURBS)-based approach can be directly integrated into the NNFE approach as a means to handle real organ geometries. While these and related approaches are in their early stages, they offer a method to perform complex organ-level simulations in clinically relevant time frames without compromising accuracy.

References

1.
Kassab
,
G. S.
, and
Sacks
,
M. S.
,
2016
,
Structure-Based Mechanics of Tissues and Organs
,
Springer
,
Berlin
.
2.
Holzapfel
,
G. A.
,
Niestrawska
,
J. A.
,
Ogden
,
R. W.
,
Reinisch
,
A. J.
, and
Schriefl
,
A. J.
,
2015
, “
Modelling Non-Symmetric Collagen Fibre Dispersion in Arterial Walls
,”
J. R. Soc. Interface
,
12
(
106
), p.
20150188
.10.1098/rsif.2015.0188
3.
S
,
G.
,
Schriefl
,
A.
,
Andra
,
M.
,
Sacherer
,
M.
,
Viertler
,
C.
,
Wolinski
,
H.
, and
Holzapfel
,
G.
,
2015
,
Biomechanical Properties and Microstructure of Human Ventricular Myocardium
,
Acta Biomaterials
,
Elsevier, Amsterdam, The Netherlands
.
4.
Lanir
,
Y.
,
1979
, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collageneous Tissues
,”
J. Biomech.
,
12
(
6
), pp.
423
436
.10.1016/0021-9290(79)90027-7
5.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.10.1016/0021-9290(83)90041-6
6.
Sacks
,
M. S.
,
Zhang
,
W.
, and
Wognum
,
S.
,
2016
, “
A Novel Fibre-Ensemble Level Constitutive Model for Exogenous Cross-Linked Collagenous Tissues
,”
Interface Focus
,
6
(
1
), p.
20150090
.10.1098/rsfs.2015.0090
7.
Zhang
,
W.
, and
Sacks
,
M. S.
,
2017
, “
Modeling the Response of Exogenously Crosslinked Tissue to Cyclic Loading: The Effects of Permanent Set
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
336
350
.10.1016/j.jmbbm.2017.07.013
8.
Zhang
,
W.
,
Ayoub
,
S.
,
Liao
,
J.
, and
Sacks
,
M. S.
,
2016
, “
A Meso-Scale Layer-Specific Structural Constitutive Model of the Mitral Heart Valve Leaflets
,”
Acta Biomater.
,
32
, pp.
238
255
.10.1016/j.actbio.2015.12.001
9.
Zhang
,
W.
,
Li
,
D. S.
,
Bui-Thanh
,
T.
, and
Sacks
,
M. S.
,
2021
, “
High-Speed Simulation of the 3D Behavior of Myocardium Using a Neural Network PDE Approach
,”
International Conference on Functional Imaging and Modeling of the Heart
,
Springer
,
Cham
, pp.
416
424
.10.1007/978-3-030-78710-3_40
10.
Scarselli
,
F.
, and
Tsoi
,
A. C.
,
1998
, “
Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results
,”
Neural Networks
,
11
(
1
), pp.
15
37
.10.1016/S0893-6080(97)00097-X
11.
Ghaboussi
,
J.
, and
Sidarta
,
D.
,
1998
, “
New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling
,”
Comput. Geotech.
,
22
(
1
), pp.
29
52
.10.1016/S0266-352X(97)00034-7
12.
Liang
,
G.
, and
Chandrashekhara
,
K.
,
2008
, “
Neural Network Based Constitutive Model for Elastomeric Foams
,”
Eng. Struct.
,
30
(
7
), pp.
2002
2011
.10.1016/j.engstruct.2007.12.021
13.
Haj-Ali
,
R.
, and
Kim
,
H.-K.
,
2007
, “
Nonlinear Constitutive Models for FRP Composites Using Artificial Neural Networks
,”
Mech. Mater.
,
39
(
12
), pp.
1035
1042
.10.1016/j.mechmat.2007.05.004
14.
Ghaboussi
,
J.
,
Pecknold
,
D. A.
,
Zhang
,
M.
, and
Haj-Ali
,
R. M.
,
1998
, “
Autoprogressive Training of Neural Network Constitutive Models
,”
Int. J. Numer. Methods Eng.
,
42
(
1
), pp.
105
126
.10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
15.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
16.
Weinan
,
E.
, and
Yu
,
B.
,
2018
, “
The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems
,”
Commun. Math. Stat.
,
6
(
1
), pp.
1
12
.10.1007/s40304-018-0127-z
17.
Nguyen-Thanh
,
V. M.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2020
, “
A Deep Energy Method for Finite Deformation Hyperelasticity
,”
Eur. J. Mech.-A/Solids
,
80
, p.
103874
.10.1016/j.euromechsol.2019.103874
18.
He
,
J.
,
Li
,
L.
,
Xu
,
J.
, and
Zheng
,
C.
,
2018
, “
Relu Deep Neural Networks and Linear Finite Elements
,”
J. Comp. Math.
, pp.
1
26
.10.4208/jcm.1901-m2018-0160
19.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.10.2514/2.1234
20.
Bilionis
,
I.
,
Zabaras
,
N.
,
Konomi
,
B. A.
, and
Lin
,
G.
,
2013
, “
Multi-Output Separable Gaussian Process: Towards an Efficient, Fully Bayesian Paradigm for Uncertainty Quantification
,”
J. Comput. Phys.
,
241
, pp.
212
239
.10.1016/j.jcp.2013.01.011
21.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
22.
Babuška
,
I.
,
Nobile
,
F.
, and
Tempone
,
R.
,
2010
, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM Rev.
,
52
(
2
), pp.
317
355
.10.1137/100786356
23.
Tripathy
,
R. K.
, and
Bilionis
,
I.
,
2018
, “
Deep uq: Learning Deep Neural Network Surrogate Models for High Dimensional Uncertainty Quantification
,”
J. Comput. Phys.
,
375
, pp.
565
588
.10.1016/j.jcp.2018.08.036
24.
Zhu
,
Y.
,
Zabaras
,
N.
,
Koutsourelakis
,
P.-S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
, pp.
56
81
.10.1016/j.jcp.2019.05.024
25.
O'Leary-Roseberry
,
T.
,
Villa
,
U.
,
Chen
,
P.
, and
Ghattas
,
O.
,
2020
, “
Derivative-Informed Projected Neural Networks for High-Dimensional Parametric Maps Governed by PDES
,”
Comp. Meth. App. Mech. Eng.
, 388, p.
114199
.10.1016/j.cma.2021.114199
26.
Sheriffdeen
,
S.
,
Ragusa
,
J. C.
,
Morel
,
J. E.
,
Adams
,
M. L.
, and
Bui-Thanh
,
T.
,
2019
, “
Accelerating Pde-Constrained Inverse Solutions With Deep Learning and Reduced Order Models
,”
arXiv:1912.08864
.https://www.researchgate.net/publication/338064573_Accelerating_PDEconstrained_Inverse_Solutions_with_Deep_Learning_and_Reduced_Order_Models
27.
Goh
,
H.
,
Sheriffdeen
,
S.
,
Wittmer
,
J.
, and
Bui-Thanh
,
T.
,
2021
, “
Solving Bayesian Inverse Problems Via Variational Autoencoders
,”
arXiv:1912.04212
.10.48550/arXiv.1912.04212
28.
Nguyen
,
H. V.
, and
Bui-Thanh
,
T.
,
2021
, “
Model-Constrained Deep Learning Approaches for Inverse Problems
,”
arXiv:2105.12033
.10.48550/arXiv.2105.12033
29.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
, 2nd ed.,
Springer
,
Berlin
.
30.
Kamensky
,
D.
,
Hsu
,
M. C.
,
Schillinger
,
D.
,
Evans
,
J. A.
,
Aggarwal
,
A.
,
Bazilevs
,
Y.
,
Sacks
,
M. S.
, and
Hughes
,
T. J.
,
2015
, “
An Immersogeometric Variational Framework for Fluid-Structure Interaction: Application to Bioprosthetic Heart Valves
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
1005
1053
.10.1016/j.cma.2014.10.040
31.
Hsu
,
M.-C.
,
Kamensky
,
D.
,
Xu
,
F.
,
Kiendl
,
J.
,
Wang
,
C.
,
Wu
,
M. C. H.
,
Mineroff
,
J.
,
Reali
,
A.
,
Bazilevs
,
Y.
, and
Sacks
,
M. S.
,
2015
, “
Dynamic and Fluid-Structure Interaction Simulations of Bioprosthetic Heart Valves Using Parametric Design With T-Splines and Fung-Type Material Models
,”
Comput. Mech.
,
55
(
6
), pp.
1211
1225
.10.1007/s00466-015-1166-x
32.
Kamensky
,
D.
,
Hsu
,
M.-C.
,
Schillinger
,
D.
,
Evans
,
J. A.
,
Aggarwal
,
A.
,
Bazilevs
,
Y.
,
Sacks
,
M. S.
, and
Hughes
,
T. J. R.
,
2014
, “
A Variational Immersed Boundary Framework for Fluid-Structure Interaction: Isogeometric Implementation and Application to Bioprosthetic Heart Valves
,” ICES Report.https://www.semanticscholar.org/paper/A-variationalimmersed-boundary-framework-for-fluid-Hsu-Schillinger/fe7bda3ff4386ed1e78e94b7a04a60d1a23feb30
33.
Hsu
,
M.-C.
,
Kamensky
,
D.
,
Bazilevs
,
Y.
,
Sacks
,
M. S.
, and
Hughes
,
T. J. R.
,
2014
, “
Fluid-Structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation
,”
Comput. Mech.
,
54
(
4
), pp.
1055
1071
.10.1007/s00466-014-1059-4
34.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
,
1998
, “
The Aortic Valve Microstructure: Effects of Transvalvular Pressure
,”
J. Biomed. Mater. Res.
,
41
(
1
), pp.
131
141
.10.1002/(SICI)1097-4636(199807)41:1<131::AID-JBM16>3.0.CO;2-Q
35.
Aggarwal
,
A.
,
Ferrari
,
G.
,
Joyce
,
E.
,
Daniels
,
M. J.
,
Sainger
,
R.
,
Gorman
,
J. H.
, 3rd
,
Gorman
,
R.
, and
Sacks
,
M. S.
,
2014
, “
Architectural Trends in the Human Normal and Bicuspid Aortic Valve Leaflet and Its Relevance to Valve Disease
,”
Ann Biomed. Eng.
,
42
(
5
), pp.
986
998
.10.1007/s10439-014-0973-0
36.
Zhang
,
W.
,
Zakerzadeh
,
R.
,
Zhang
,
W.
, and
Sacks
,
M. S.
,
2019
, “
A Material Modeling Approach for the Effective Response of Planar Soft Tissues for Efficient Computational Simulations
,”
J. Mech. Behav. Biomed. Mater.
,
89
, pp.
168
198
.10.1016/j.jmbbm.2018.09.016
37.
Zhang
,
W.
,
Rossini
,
G.
,
Kamensky
,
D.
,
Bui-Thanh
,
T.
, and
Sacks
,
M. S.
,
2021
, “
Isogeometric Finite Element-Based Simulation of the Aortic Heart Valve: Integration of Neural Network Structural Material Model and Structural Tensor Fiber Architecture Representations
,”
Int. J. Numer. Methods Biomed. Eng.
,
37
(
4
), p.
e3438
.10.1002/cnm.3438
38.
Zhang
,
W.
,
Motiwale
,
S.
,
Hsu
,
M.-C.
, and
Sacks
,
M. S.
, “
Simulating the Time Evolving Geometry, Mechanical Properties, and Fibrous Structure of Bioprosthetic Heart Valve Leaflets Under Cyclic Loading
,”
J. Mech. Behav. Biomed. Mater.
,
123
, p.
104745
.10.1016/j.jmbbm.2021.104745
39.
Xu
,
F.
,
Morganti
,
S.
,
Zakerzadeh
,
R.
,
Kamensky
,
D.
,
Auricchio
,
F.
,
Reali
,
A.
,
Hughes
,
T. J. R.
,
Sacks
,
M. S.
, and
Hsu
,
M.-C.
,
2018
, “
A Framework for Designing Patient-Specific Bioprosthetic Heart Valves Using Immersogeometric Fluid-Structure Interaction Analysis
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
4
), p.
e2938
.10.1002/cnm.2938
40.
Zakerzadeh
,
R.
,
Hsu
,
M.-C.
, and
Sacks
,
M. S.
,
2017
, “
Computational Methods for the Aortic Heart Valve and Its Replacements
,”
Exp. Rev. Med. Dev.
,
14
(
11
), pp.
849
866
. 10.1080/17434440.2017.1389274
41.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M.
,
2005
, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
905
914
.10.1115/1.2049337
42.
Kamensky
,
D.
, and
Bazilevs
,
Y.
,
2019
, “
tIGAr: Automating Isogeometric Analysis With FEniCS
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
477
498
.10.1016/j.cma.2018.10.002
43.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Networks
,
9
(
5
), pp.
987
1000
.10.1109/72.712178
44.
Müller
,
J.
, and
Zeinhofer
,
M.
,
2019
, “
Deep Ritz Revisited Abs/1912.03937
,”
arXiv:1912.03937
.https://www.semanticscholar.org/paper/Deep-Ritz-revisited-M%C3%BCller-Zeinhofer/b23ef0bc1c50c1ae784e6451b660258c23acfbc2
45.
Eftekhari
,
S. A.
, and
Jafari
,
A. A.
,
2012
, “
High Accuracy Mixed Finite element-Ritz Formulation for Free Vibration Analysis of Plates With General Boundary Conditions
,”
Appl. Math. Comput.
,
219
(
3
), pp.
1312
1344
.10.1016/j.amc.2012.07.039
46.
Zhang
,
W.
,
Li
,
D. S.
,
Bui-Thanh
,
T.
, and
Sacks
,
M. S.
,
2022
, “
Simulation of the 3d Hyperelastic Behavior of Ventricular Myocardium Using a Finite-Element Based Neural-Network Approach
,”
Comput. Methods Appl. Mech. Eng.
,
394
, p.
114871
.10.1016/j.cma.2022.114871
47.
Li
,
D. S.
,
Avazmohammadi
,
R.
,
Merchant
,
S. S.
,
Kawamura
,
T.
,
Hsu
,
E. W.
,
Gorman
,
J. H.
, III
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2020
, “
Insights Into the Passive Mechanical Behavior of Left Ventricular Myocardium Using a Robust Constitutive Model Based on Full 3d Kinematics
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103508
.10.1016/j.jmbbm.2019.103508
48.
Ogden
,
R.
,
1997
,
Non-Linear Elastic Deformations
,
Toronto
,
Dover
.
49.
Wriggers
,
P.
,
2008
,
Nonlinear Finite Element Methods
,
Springer Science & Business Media
,
Berlin
.
50.
Morokoff
,
W. J.
, and
Caflisch
,
R. E.
,
1995
, “
Quasi-Monte Carlo Integration
,”
J. Comput. Phys.
,
122
(
2
), pp.
218
230
.10.1006/jcph.1995.1209
51.
Dillon
,
J. V.
,
Langmore
,
I.
,
Tran
,
D.
,
Brevdo
,
E.
,
Vasudevan
,
S.
,
Moore
,
D.
,
Patton
,
B.
,
Alemi
,
A.
,
Hoffman
,
M.
, and
Saurous
,
R. A.
,
2017
, “
Tensorflow Distributions
,” arXiv preprint
arXiv:1711.10604
.10.48550/arXiv.1711.10604
52.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.10.1016/j.cma.2004.10.008
53.
Cottrell
,
J. A.
,
Hughes
,
T. J.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
Wiley
,
Hoboken, NJ
.
54.
Kamensky
,
D.
,
Hsu
,
M.-C.
,
Yu
,
Y.
,
Evans
,
J. A.
,
Sacks
,
M. S.
, and
Hughes
,
T. J. R.
,
2017
, “
Immersogeometric Cardiovascular Fluid-Structure Interaction Analysis With Divergence-Conforming b-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
314
, pp.
408
472
.10.1016/j.cma.2016.07.028
55.
Rego
,
B. V.
, and
Sacks
,
M. S.
,
2017
, “
A Functionally Graded Material Model for the Transmural Stress Distribution of the Aortic Valve Leaflet
,”
J. Biomech.
,
54
, pp.
88
95
.10.1016/j.jbiomech.2017.01.039
56.
Smith
,
D. B.
,
Sacks
,
M. S.
,
Pattany
,
P. M.
, and
Schroeder
,
R.
,
1999
, “
Fatigue-Induced Changes in Bioprosthetic Heart Valve Three-Dimensional Geometry and the Relation to Tissue Damage
,”
J. Heart Valve Dis.
,
8
(
1
), pp.
25
33
.https://pubmed.ncbi.nlm.nih.gov/10096478/
57.
Sacks
,
M. S.
, and
Smith
,
D. B.
,
1998
, “
Effects of Accelerated Testing on Porcine Bioprosthetic Heart Valve Fiber Architecture
,”
Biomaterials
,
19
(
11–12
), pp.
1027
1036
.10.1016/S0142-9612(98)00002-7
58.
Feng
,
X.
,
Gramling
,
D. P.
,
vanVeldhuisen
,
A. L.
,
McComb
,
D.
,
Breuer
,
C. K.
,
Georgen
,
C.
, and
Sacks
,
M. S.
,
2022
, “
Dynamic in-Vivo Motion of the Mouse Aortic Heart Valve
,”
Summer Biomechanics, Bioengineering and Biotransport Conference
, Cambridge, MD, June 20–23.
59.
Bradbury
,
J.
,
Frostig
,
R.
,
Hawkins
,
P.
,
Johnson
,
M. J.
,
Leary
,
C.
,
Maclaurin
,
D.
,
Necula
,
G.
,
Paszke
,
A.
,
VanderPlas
,
J.
,
Wanderman-Milne
,
S.
, and
Zhang
,
Q.
,
2018
, “
JAX: Composable Transformations of Python+NumPy Programs
,” GitHub, accessed Oct. 13, 2022, http://github.com/google/jax
60.
Logg
,
A.
,
Mardal
,
K.-A.
, and
Wells
,
G.
,
2012
, URL
Automated Solution of Differential Equations by the Finite Element Method the FEniCS Book
(Lecture Notes in Computational Science and Engineering), 2012th ed.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
61.
Drach
,
A.
,
Khalighi
,
A. H.
, and
Sacks
,
M. S.
,
2018
, “
A Comprehensive Pipeline for Multi-Resolution Modeling of the Mitral Valve: Validation, Computational Efficiency, and Predictive Capability
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
2
), p.
e2921
.10.1002/cnm.2921
62.
Tac
,
V.
,
Costabal
,
F. S.
, and
Tepole
,
A. B.
,
2021
, “
Automatically Polyconvex Strain Energy Functions Using Neural Ordinary Differential Equations
,” arXiv preprint
arXiv:2110.03774
.10.48550/arXiv.2110.03774
63.
Tac
,
V.
,
Sree
,
V. D.
,
Rausch
,
M. K.
, and
Tepole
,
A. B.
,
2021
, “
Data-Driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue
,”
arXiv:2107.05388
.10.48550/arXiv.2107.05388
64.
Teichert
,
G.
,
Natarajan
,
A.
,
der Ven
,
A. V.
, and
Garikipati
,
K.
,
2019
, “
Machine Learning Materials Physics: Integrable Deep Neural Networks Enable Scale Bridging by Learning Free Energy Functions
,”
Comput. Methods Appl. Mech. Eng.
,
353
, pp.
201
216
.10.1016/j.cma.2019.05.019
65.
Lanir
,
Y.
,
1994
, “
Plausibility of Structural Constitutive-Equations for Isotropic Soft-Tissues in Finite Static Deformations
,”
ASME J. Appl. Mech.
,
61
(
3
), pp.
695
702
.10.1115/1.2901516
66.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis
, John
Wiley & Sons
,
Chichester, UK
.
67.
Wesley, B.
, 2022, “Computational Models of Human Anatomy,” Monte Carlo Calculations in Nuclear Medicine (Second Edition): Therapeutic Applications, IOP Publishing, Bristol, UK.
68.
Soares
,
J. S.
,
Li
,
D. S.
,
Lai
,
E.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2017
, “
Modeling of Myocardium Compressibility and Its Impact in Computational Simulations of the Healthy and Infarcted Heart
,”
Functional Imaging and Modeling of the Heart: … International Workshop, FIMH…, Proceedings. FIMH 10263
, Stanford, CA, June 21–25, pp.
493
501
.10.1007/978-3-319-59448-4_47
69.
Liu
,
H.
,
Soares
,
J. S.
,
Walmsley
,
J.
,
Li
,
D. S.
,
Raut
,
S.
,
Avazmohammadi
,
R.
,
Iaizzo
,
P.
, et al.,
2021
, “
The Impact of Myocardial Compressibility on Organ-Level Simulations of the Normal and Infarcted Heart
,”
Sci. Rep.
,
11
(
1
), p.
15
.10.1038/s41598-020-79080-w
70.
Corral-Acero
,
J.
,
Margara
,
F.
,
Marciniak
,
M.
,
Rodero
,
C.
,
Loncaric
,
F.
,
Feng
,
Y.
,
Gilbert
,
A.
,
et al.
,
2020
, “
The ‘Digital Twin’ to Enable the Vision of Precision Cardiology
,”
Eur. Heart J.
, 41(48), pp.
4556
4564
.10.1093/eurheartj/ehaa159
71.
Niederer
,
S. A.
, and
Smith
,
N. P.
,
2012
, “
At the Heart of Computational Modelling
,”
J. Physiol.
,
590
(
6
), pp.
1331
1338
.10.1113/jphysiol.2011.225045
72.
Nordsletten
,
D. A.
,
Niederer
,
S. A.
,
Nash
,
M. P.
,
Hunter
,
P. J.
, and
Smith
,
N. P.
,
2011
, “
Coupling Multi-Physics Models to Cardiac Mechanics
,”
Prog. Biophys. Mol. Biol.
,
104
(
1–3
), pp.
77
88
.10.1016/j.pbiomolbio.2009.11.001
73.
Piegl
,
L.
, and
Tiller
,
W.
,
1996
,
The NURBS Book
,
Springer Science & Business Media
,
Berlin
.
You do not currently have access to this content.