Abstract

Blood, a multiphase fluid comprised of plasma, blood cells, and platelets, is known to exhibit a shear-thinning behavior at low shear rates and near-Newtonian behavior at higher shear rates. However, less is known about the impact of its multiphase nature on the transition to turbulence. In this study, we experimentally determined the critical Reynolds number at which the flow began to transition to turbulence downstream of eccentric stenosis for whole porcine blood and a Newtonian blood analog (water-glycerin mixture). Velocity profiles for both fluids were measured under steady-state flow conditions using an ultrasound Doppler probe placed 12 diameters downstream of eccentric stenosis. Velocity was recorded at 21 locations along the diameter at 11 different flow rates. Normalized turbulent kinetic energy was used to determine the critical Reynolds number for each fluid. Blood rheology was measured before and after each experiment. Tests were conducted on five samples of each fluid inside a temperature-controlled in vitro flow system. The viscosity at a shear rate of 1000 s−1 was used to define the Reynolds number for each fluid. The mean critical Reynolds numbers for blood and water-glycerin were 470 ± 27.5 and 395 ± 10, respectively, indicating a ∼19% delay in transition to turbulence for whole blood compared to the Newtonian fluid. This finding is consistent with a previous report for steady flow in a straight pipe, suggesting some aspect of blood rheology may serve to suppress, or at least delay, the onset of turbulence in vivo.

References

1.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1983
, “
Velocity Measurements in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Numbers
,”
J. Biomech.
,
16
(
7
), pp.
505
516
.10.1016/0021-9290(83)90065-9
2.
Varghese
,
S.
,
Frankel
,
S.
, and
Fischer
,
P.
,
2007
, “
Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow
,”
J. Fluid Mech.
,
582
, pp.
253
280
.10.1017/S0022112007005848
3.
Khan
,
M. O.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D.
,
2019
, “
Direct Numerical Simulation of Laminar-Turbulent Transition in a Non-Axisymmetric Stenosis Model for Newtonian vs. Shear-Thinning Non-Newtonian Rheologies
,”
Flow Turbul. Combust.
,
102
(
1
), pp.
43
72
.10.1007/s10494-018-9905-7
4.
Biswas
,
D.
,
Casey
,
D. M.
,
Crowder
,
D. C.
,
Steinman
,
D. A.
,
Yun
,
Y. H.
, and
Loth
,
F.
,
2016
, “
Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
, 138(
7
), p. 071001.10.1115/1.4033474
5.
Yeleswarapu
,
K. K.
,
Kameneva
,
M. V.
,
Rajagopal
,
K. R.
, and
Antaki
,
J. F.
,
1998
, “
The Flow of Blood in Tubes: Theory and Experiment
,”
Mech. Res. Commun.
,
25
(
3
), pp.
257
262
.10.1016/S0093-6413(98)00036-6
6.
Brooks
,
D. E.
,
Goodwin
,
J. W.
, and
Seaman
,
G. V.
,
1970
, “
Interactions Among Erythrocytes Under Shear
,”
J. Appl. Physiol.
,
28
(
2
), pp.
172
177
.10.1152/jappl.1970.28.2.172
7.
Elblbesy
,
M. A.
, and
Hereba
,
A. T.
,
2016
, “
Computation of the Coefficients of the Power Law Model for Whole Blood and Their Correlation With Blood Parameters
,”
Appl. Phys. Res.
,
8
(
2
), p.
1
.10.5539/apr.v8n2p1
8.
Baskurt
,
O. K.
, and
Meiselman
,
H. J.
,
2003
, “
Blood Rheology and Hemodynamics
,”
Semin. Thromb. Hemost.
,
29
(
5
), pp.
435
450
.10.1055/s-2003-44551
9.
Mueller
,
S.
,
Llewellin
,
E. W.
, and
Mader
,
H. M.
,
2009
, “
The Rheology of Suspensions of Solid Particles
,”
Proc. R. Soc. A
,
466
(
2116
), pp.
1201
1228
.10.1098/rspa.2009.0445
10.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
11.
Lee
,
S. W.
,
Smith
,
D. S.
,
Loth
,
F.
,
Fischer
,
P. F.
, and
Bassiouny
,
H. S.
,
2007
, “
Importance of Flow Division on Transition to Turbulence Within an Arteriovenous Graft
,”
J. Biomech.
,
40
(
5
), pp.
981
992
.10.1016/j.jbiomech.2006.03.024
12.
Hutchison
,
K. J.
, and
Karpinski
,
E.
,
1985
, “
In Vivo Demonstration of Flow Recirculation and Turbulence Downstream of Graded Stenoses in Canine Arteries
,”
J. Biomech.
,
18
(
4
), pp.
285
296
.10.1016/0021-9290(85)90846-2
13.
Lee
,
S.
,
Fischer
,
P.
,
Loth
,
F.
,
Royston
,
T.
,
Grogan
,
J. K.
, and
Bassiouny
,
H. S.
,
2005
, “
Flow-Induced Vein-Wall Vibration in an Arteriovenous Graft
,”
J. Fluids Struct.
,
20
(
6
), pp.
837
852
.10.1016/j.jfluidstructs.2005.04.006
14.
Lee
,
S. E.
,
Lee
,
S. W.
,
Fischer
,
P. F.
,
Bassiouny
,
H. S.
, and
Loth
,
F.
,
2008
, “
Direct Numerical Simulation of Transitional Flow in a Stenosed Carotid Bifurcation
,”
J. Biomech.
,
41
(
11
), pp.
2551
2561
.10.1016/j.jbiomech.2008.03.038
15.
Lee
,
S. W.
,
Smith
,
D.
,
Loth
,
F.
,
Fischer
,
P.
, and
Bassiouny
,
H.
,
2007
, “
Numerical and Experimental Simulation of Transitional Flow in a Blood Vessel Junction
,”
Numer. Heat Transfer Part A-Appl.
,
51
(
1
), pp.
1
22
.10.1080/10407780600710375
16.
Loth
,
F.
,
Fischer
,
P. F.
,
Arslan
,
N.
,
Bertram
,
C. D.
,
Lee
,
S. E.
,
Royston
,
T. J.
,
Shaalan
,
W. E.
, and
Bassiouny
,
H. S.
,
2003
, “
Transitional Flow at the Venous Anastomosis of an Arteriovenous Graft: Potential Activation of the ERK1/2 Mechanotransduction Pathway
,”
J. Biomech. Eng.
,
125
(
1
), pp.
49
61
.10.1115/1.1537737
17.
Ford
,
M. D.
,
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
DeMont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2008
, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
, 130(
2
), p.
021015
.10.1115/1.2900724
18.
Cassanova
,
R. A.
, and
Giddens
,
D. P.
,
1978
, “
Disorder Distal to Modeled Stenoses in Steady and Pulsatile Flow
,”
J. Biomech.
,
11
(
10–12
), pp.
441
453
.10.1016/0021-9290(78)90056-8
19.
Vétel
,
J.
,
Garon
,
A.
,
Pelletier
,
D.
, and
Farinas
,
M. I.
,
2008
, “
Asymmetry and Transition to Turbulence in a Smooth Axisymmetric Constriction
,”
J. Fluid Mech.
,
607
, pp.
351
386
.10.1017/S0022112008002188
20.
Griffith
,
M. D.
,
Leweke
,
T.
,
Thompson
,
M. C.
, and
Hourigan
,
K.
,
2008
, “
Steady Inlet Flow in Stenotic Geometries: Convective and Absolute Instabilities
,”
J. Fluid Mech.
,
616
, pp.
111
133
.10.1017/S0022112008004084
21.
Kim
,
B. M.
, and
Corcoran
,
W. H.
,
1974
, “
Experimental Measurements of Turbulence Spectra Distal to Stenoses
,”
J. Biomech.
,
7
(
4
), pp.
335
342
.10.1016/0021-9290(74)90028-1
22.
Samuelsson
,
J.
,
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2015
, “
Breaking Axi-Symmetry in Stenotic Flow Lowers the Critical Transition Reynolds Number
,”
Phys. Fluids
,
27
(
10
), p.
104103
.10.1063/1.4934530
23.
Nerem
,
R. M.
, and
Seed
,
W. A.
,
1972
, “
An In Vivo Study of Aortic Flow Disturbances
,”
Cardiovasc. Res.
,
6
(
1
), pp.
1
14
.10.1093/cvr/6.1.1
24.
Ferrari
,
M.
,
Werner
,
G. S.
,
Bahrmann
,
P.
,
Richartz
,
B. M.
, and
Figulla
,
H. R.
,
2006
, “
Turbulent Flow as a Cause for Underestimating Coronary Flow Reserve Measured by Doppler Guide Wire
,”
Cardiovasc. Ultrasound.
,
4
(
1
), p.
14
.10.1186/1476-7120-4-14
25.
Oglat
,
A. A.
,
Matjafri
,
M. Z.
,
Suardi
,
N.
,
Oqlat
,
M. A.
,
Abdelrahman
,
M. A.
, and
Oqlat
,
A. A.
,
2018
, “
A Review of Medical Doppler Ultrasonography of Blood Flow in General and Especially in Common Carotid Artery
,”
J. Med. Ultrasound.
,
26
(
1
), pp.
3
13
.10.4103/JMU.JMU_11_17
26.
Hossain
,
M. S.
,
Pal
,
B.
, and
Mukhopadhyay
,
P. K.
,
2018
, “
Ultrasonic Characterization of Newtonian and Non-Newtonian Fluids
,”
Universal J. Phys. Appl.
,
12
(
3
), pp.
41
46
.10.13189/ujpa.2018.120302
27.
Thorne
,
M. L.
,
Poepping
,
T. L.
,
Nikolov
,
H. N.
,
Rankin
,
R. N.
,
Steinman
,
D. A.
, and
Holdsworth
,
D. W.
,
2009
, “
In Vitro Doppler Ultrasound Investigation of Turbulence Intensity in Pulsatile Flow With Simulated Cardiac Variability
,”
Ultrasound Med. Biol.
,
35
(
1
), pp.
120
128
.10.1016/j.ultrasmedbio.2008.08.007
28.
Freidoonimehr
,
N.
,
Arjomandi
,
M.
,
Sedaghatizadeh
,
N.
,
Chin
,
R.
, and
Zander
,
A.
,
2020
, “
Transitional Turbulent Flow in a Stenosed Coronary Artery With a Physiological Pulsatile Flow
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
7
), p.
e3347
.10.1002/cnm.3347
29.
Bergersen
,
A. W.
,
Mortensen
,
M.
, and
Valen-Sendstad
,
K.
,
2019
, “
The FDA Nozzle Benchmark: ‘in Theory There is No Difference Between Theory and Practice, but in Practice There Is
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
1
), p.
e3150
.10.1002/cnm.3150
You do not currently have access to this content.