Abstract

Tremor is a semirhythmic oscillatory movement of a body part caused by alternating simultaneous contractions of an antagonistic muscle group. Medical and surgical treatments used to reduce the symptoms of involuntary tremor can cause negative side effects. This study examined the ability of passive vibration absorbers in reducing the amplitude of postural tremor (PT). Inertial measurement unit (IMU) was used to record PT signals at the forearm and hand of a patient. IMU signal was used to excite an upper limb modeled to represent the flexion–extension vibrational motion at the joints. Equations of motion were solved numerically to obtain a response that fits the measured tremor signal. Passive tuned mass damper (TMD) was modeled as a cantilever beam and a screw placed along its length, at a position reflecting its operational frequency. Natural frequency of the TMD was derived for different mass positions and validated numerically and experimentally. Modal damping ratio of the TMD, for each mass position, was also estimated. Mass position and damping coefficient of the TMD were optimized depending on the minimization in the power spectral density (PSD) of angular displacement amplitude at the wrist joint. Optimized three-TMD system of 28.64 g total effective mass with the estimated modal damping ratio reduced 83.1% of the PSD of the angular displacement amplitude. This study showed the performance ability of a lightweight passive absorber in controlling the involuntary tremor of a system excited by the measured tremor signal of a patient.

References

1.
Almeida
,
M. F. S.
,
Cavalheiro
,
G. L.
,
Pereira
,
A. A.
, and
Andrade
,
A. O.
,
2010
, “
Investigation of Age-Related Changes in Physiological Kinetic Tremor
,”
Ann. Biomed. Eng.
,
38
(
11
), pp.
3423
3439
.10.1007/s10439-010-0098-z
2.
Rocon
,
E.
,
Belda-Lois
,
J. M.
,
Sanchez-Lacuesta
,
J. J.
, and
Pons
,
J. L.
,
2004
, “
Pathological Tremor Management: Modelling, Compensatory Technology and Evaluation
,”
Technol. Disability
,
16
(
1
), pp.
3
18
.10.3233/TAD-2004-16102
3.
Dallapiazza
,
R. F.
,
De Vloo
,
P.
,
Fomenko
,
A.
,
Lee
,
D. J.
,
Hamani
,
C.
,
Munhoz
,
R. P.
,
Hodaie
,
M.
,
Lozano
,
A. M.
,
Fasano
,
A.
, and
Kalia
,
S. K.
,
2018
, “
Considerations for Patient and Target Selection in Deep Brain Stimulation Surgery for Parkinson's Disease
,” Parkinson’s Disease: Pathogenesis and Clinical Aspects, Codon Publications, Brisbane, Australia, pp.
145
160
.
4.
Groiss
,
S. J.
,
Wojtecki
,
L.
,
Südmeyer
,
M.
, and
Schnitzler
,
A.
,
2009
, “
Deep Brain Stimulation in Parkinson's Disease
,”
Ther. Adv. Neurol. Disord.
,
2
(
6
), pp.
379
391
.10.1177/1756285609339382
5.
Lu
,
M.
,
Wei
,
X.
,
Che
,
Y.
,
Wang
,
J.
, and
Loparo
,
K. A.
,
2020
, “
Application of Reinforcement Learning to Deep Brain Stimulation in a Computational Model of Parkinson's Disease
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
1
), pp.
339
349
.10.1109/TNSRE.2019.2952637
6.
Morrison
,
S.
,
Kerr
,
G.
, and
Silburn
,
P.
,
2008
, “
Bilateral Tremor Relations in Parkinson's Disease: Effects of Mechanical Coupling and Medication
,”
Parkinsonism Relat. Disord.
,
14
(
4
), pp.
298
308
.10.1016/j.parkreldis.2007.09.004
7.
Gillard
,
D. M.
,
Cameron
,
T.
,
Prochazka
,
A.
, and
Gauthier
,
M. J. A.
,
1999
, “
Tremor Suppression Using Functional Electrical Stimulation: A Comparison Between Digital and Analog Controllers
,”
IEEE Trans. Rehabil. Eng.
,
7
(
3
), pp.
385
388
.10.1109/86.788474
8.
Naghavi
,
N.
, and
Wade
,
E.
,
2019
, “
Prediction of Freezing of Gait in Parkinson's Disease Using Statistical Inference and Lower-Limb Acceleration Data
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
5
), pp.
947
955
.10.1109/TNSRE.2019.2910165
9.
Rocon
,
E.
,
Belda-Lois
,
J. M.
,
Ruiz
,
A. F.
,
Manto
,
M.
,
Moreno
,
J. C.
, and
Pons
,
J. L.
,
2007
, “
Design and Validation of a Rehabilitation Robotic Exoskeleton for Tremor Assessment and Suppression
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
367
378
.10.1109/TNSRE.2007.903917
10.
Gebai
,
S.
,
Cumunel
,
G.
,
Hammoud
,
M.
, and
Foret
,
G.
,
2019
, “
Passive Absorber to Reduce the Upper-Limbs Involuntary Tremor
,”
24e Congrès Français de Mécanique
, Brest, France, Aug. 26–30, pp.
3528
3537
.
11.
Corie
,
T. H.
, and
Charles
,
S. K.
,
2019
, “
Simulated Tremor Propagation in the Upper Limb: From Muscle Activity to Joint Displacement
,”
ASME J. Biomech. Eng.
,
141
(
8
), p.
081001
.10.1115/1.4043442
12.
Gebai
,
S.
,
Cumunel
,
G.
,
Hammoud
,
M.
,
Foret
,
G.
,
Apartis
,
E.
,
Flamand-Roze
,
E.
, and
Hainque
,
E.
,
2019
, “
Analysis of Pathological Tremor Behavior: Application to Design a Passive Tremor Attenuator
,”
The 12th International Workshop on Structural Health Monitoring
, Stanford, CA, Sept. 10–12, pp.
619
626
.10.12783/shm2019/32165
13.
Jackson
,
K. M.
,
Joseph
,
J. T.
, and
Wyard
,
S. J.
,
1978
, “
A Mathematical Model of Arm Swing During Human Locomotion
,”
J. Biomech.
,
11
(
6–7
), pp.
277
289
.10.1016/0021-9290(78)90061-1
14.
Goddard
,
R.
,
Dowson
,
D.
,
Longfield
,
M.
, and
Wright
,
V.
,
1969
,
Lubrication and Wear in Joints
,
Sector Publishing
,
London
, UK, pp.
134
139
.
15.
Harless
,
E.
,
1860
, “
The Static Moments of Human Limbs
,”
Trans. of the Math.Phys., Royal Bavarian Acd. of Sci.
, Wright-Patterson Air Force Base, OH, 8(1–2), pp.
69
96
.
16.
Gebai
,
S.
,
Hammoud
,
M.
, and
Khachfe
,
H.
,
2018
, “
Parametric Study of an Enhanced Passive Absorber Used for Tremor Suppression
,”
Struct. Control Health Monit.
,
25
(
7
), p.
e2177
.10.1002/stc.2177
17.
Atzori
,
B.
,
1974
, “
Dunkerley's Formula for Finding the Lowest Frequency of Vibration of Elastic Systems
,”
J. Sound Vib.
,
36
(
4
), pp.
563
564
.10.1016/S0022-460X(74)80122-7
18.
Inman
,
D. J.
,
2008
,
Engineering Vibrations
,
Prentice Hall
,
Upper Saddle River, NJ
, Chap.
6
.
19.
Norton
,
R. L.
,
2018
,
Machine Design: An Integrated Approach
,
Prentice Hall
, MA, Chap. 3.
20.
Raikova
,
R.
,
1992
, “
A General Approach for Modelling and Mathematical Investigation of the Human Upper Limb
,”
J. Biomech.
,
25
(
8
), pp.
857
867
.10.1016/0021-9290(92)90226-Q
21.
Argoul
,
P.
, and
Le
,
T. P.
,
2003
, “
Instantaneous Indicators of Structural Behaviour Based on the Continuous Cauchy Wavelet Analysis
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
243
250
.10.1006/mssp.2002.1557
22.
Raethjen
,
J.
,
Lindemann
,
M.
,
Schmaljohann
,
H.
,
Wenzelburger
,
R.
,
Pfister
,
G.
, and
Deuschl
,
G.
,
2000
, “
Multiple Oscillators Are Causing Parkinsonian and Essential Tremor
,”
Mov. Disord.
,
15
(
1
), pp.
84
94
.10.1002/1531-8257(200001)15:1<84::AID-MDS1014>3.0.CO;2-K
23.
Cathers
,
I.
,
O'Dwyer
,
N.
, and
Neilson
,
P.
,
2006
, “
Entrainment to Extinction of Physiological Tremor by Spindle Afferent Input
,”
Exp. Brain Res.
,
171
(
2
), pp.
194
203
.10.1007/s00221-005-0258-9
24.
Stone
,
N.
,
Kaiser
,
K.
, and
White
,
R. D.
,
2006
, “
Autotuning of a PID Controller for an Active Vibration Suppression Device for the Treatment of Essential Tremor
,”
ASME
Paper No. IMECE2006-14138.10.1115/IMECE2006-14138
25.
Rudraraju
,
S.
, and
Nguyen
,
T.
,
2018
, “
Wearable Tremor Reduction Device (TRD) for Human Hands and Arms
,”
ASME
Paper No. DMD2018-6918.10.1115/DMD2018-6918
26.
Huen
,
D.
,
Liu
,
J.
, and
Lo
,
B.
,
2016
, “
An Integrated Wearable Robot for Tremor Suppression With Context Aware Sensing
,”
2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)
, San Francisco, CA, June 14–17, pp.
312
317
.10.1109/BSN.2016.7516280
You do not currently have access to this content.