Abstract

A manual material handling task involves the phases of reaching, lifting, unloading, and standing up (RLUS). Understanding the mechanisms of manual material handling is important for occupational health and the development of assist devices. Predictive models are becoming popular in exploring which performance criterion is appropriate in the lifting phase. However, limited attempts have been performed on the other phases. The associated performance criterion for predicting other phases is unknown. In this study, an optimization model for predicting RLUS has been developed with the multi-objective optimization method. Two performance criteria (minimum dynamic effort and maximum balance) were studied to explore their importance in each phase. The result shows that maximum balance leads to joint angle errors 27.6% and 40.9% smaller than minimum dynamic effort in reaching and unloading phases, but 40.4% and 65.9% larger in lifting and standing up phases. When the two performance criteria are combined, the maximum balance could help improve the predicting accuracy in the reaching, lifting, and unloading phases. These findings suggest that people prefer different performance criteria in different phases. This study helps understand the differences in motion strategies in manual materials handling (MMH), which would be used to develop a more accurate predictive model.

References

1.
Yang
,
G.
,
Wang
,
Y.
,
Zeng
,
Y.
,
Gao
,
G. F.
,
Liang
,
X.
,
Zhou
,
M.
,
Wan
,
X.
,
2013
, “
Rapid Health Transition in China, 1990–2010: Findings From the Global Burden of Disease Study 2010
,”
Lancet
,
381
(
9882
), pp.
1987
2015
.10.1016/S0140-6736(13)61097-1
2.
Maniadakis, N., and Gray, A.
,
2000
, “
The Economic Burden of Back Pain in the UK
,”
Pain
,
84
(
1
), pp.
95
103
.10.1016/S0304-3959(99)00187-6
3.
Hoy
,
D.
,
Brooks
,
P.
,
Blyth
,
F.
, and
Buchbinder
,
R.
,
2010
, “
The Epidemiology of Low Back Pain
,”
Best Pract. Res. Clin. Rheumatol.
,
24
(
6
), pp.
769
781
.10.1016/j.berh.2010.10.002
4.
Kingma
,
I.
,
Baten
,
C.
,
Dolan
,
P.
,
Toussaint
,
H.
,
van Dieën
,
J.
,
de Looze
,
M.
, and
Adams
,
M.
,
2001
, “
Lumbar Loading During Lifting: A Comparative Study of Three Measurement Techniques
,”
J. Electromyogr. Kinesiol.
,
11
(
5
), pp.
337
345
.10.1016/S1050-6411(01)00011-6
5.
Kingma
,
I.
,
Faber
,
G.
, and
van Dieën
,
J.
,
2010
, “
How to Lift a Box That is Too Large to Lift Between the Knees
,”
Ergonomics
,
53
(
10
), pp.
1228
1238
.10.1080/00140139.2010.512983
6.
Chaffin
,
D. B.
,
Andersson
,
G. B. J.
, and
Martin
,
B. J.
,
2006
,
Occupational Biomechanics
, 4th ed.,
Wiley
, Hoboken, NJ.
7.
Gündogdu
,
Ö.
,
Anderson
,
K. S.
, and
Parnianpour
,
M.
,
2005
, “
Simulation of Manual Materials Handling: Biomechanial Assessment Under Different Lifting Conditions
,”
Technol. Health Care
,
13
(
1
), pp.
57
66
.10.3233/THC-2005-13103
8.
Chang
,
C. C.
,
Brown
,
D. R.
,
Bloswick
,
D. S.
, and
Hsiang
,
S. M.
,
2001
, “
Biomechanical Simulation of Manual Lifting Using Spacetime Optimization
,”
J. Biomech.
,
34
(
4
), pp.
527
532
.10.1016/S0021-9290(00)00222-0
9.
Chaffin
,
D. B.
,
2005
, “
Improving Digital Human Modelling for Proactive Ergonomics in Design
,”
Ergonomics
,
48
(
5
), pp.
478
491
.10.1080/00140130400029191
10.
Seth
,
A.
,
Sherman
,
M.
,
Reinbolt
,
J. A.
, and
Delp
,
S. L.
,
2011
, “
Opensim: A Musculoskeletal Modeling and Simulation Framework for in Silico Investigations and Exchange
,”
Procedia IUTAM
,
2
(
1
), pp.
212
232
.10.1016/j.piutam.2011.04.021
11.
Manns
,
P.
,
Sreenivasa
,
M.
,
Millard
,
M.
, and
Mombaur
,
K.
,
2017
, “
Motion Optimization and Parameter Identification for a Human and Lower Back Exoskeleton Model
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1564
1570
.10.1109/LRA.2017.2676355
12.
Song
,
J.
,
Qu
,
X.
, and
Chen
,
C.-H.
,
2015
, “
Lifting Motion Simulation Using a Hybrid Approach
,”
Ergonomics
,
58
(
9
), pp.
1557
1570
.10.1080/00140139.2015.1015624
13.
Song
,
J.
,
Qu
,
X.
, and
Chen
,
C.-H.
,
2016
, “
Simulation of Lifting Motions Using a Novel Multi-Objective Optimization Approach
,”
Int. J. Ind. Ergonom.
,
53
(
2016
), pp.
37
47
.10.1016/j.ergon.2015.10.002
14.
Lin
,
C. J.
,
Ayoub
,
M. M.
, and
Bernard
,
T. M.
,
1999
, “
Computer Motion Simulation for Sagittal Plane Lifting Activities
,”
Int. J. Ind. Ergonom.
,
24
(
2
), pp.
141
155
.10.1016/S0169-8141(98)00010-9
15.
Noone
,
G.
, and
Mazumdar
,
J.
,
1992
, “
Lifting Low-Lying Loads in the Sagittal Plane
,”
Ergonomics
,
35
(
1
), pp.
65
92
.10.1080/00140139208967798
16.
Xiang
,
Y.
,
Arora
,
J. S.
, and
Abdel-Malek
,
K.
,
2012
, “
3D Human Lifting Motion Prediction With Different Performance Measures
,”
Int. J. Humanoid Rob.
,
09
(
02
), p.
1250012
.10.1142/S0219843612500120
17.
Hsiang
,
S. M.
, and
McGorry
,
R. W.
,
1997
, “
Three Different Lifting Strategies for Controlling the Motion Patterns of the External Load
,”
Ergonomics
,
40
(
9
), pp.
928
939
.10.1080/001401397187757
18.
Xiang
,
Y.
,
Arora
,
J. S.
,
Rahmatalla
,
S.
,
Marler
,
T.
,
Bhatt
,
R.
, and
Abdel-Malek
,
K.
,
2010
, “
Human Lifting Simulation Using a Multi-Objective Optimization Approach
,”
Multibody Syst. Dyn.
,
23
(
4
), pp.
431
451
.10.1007/s11044-009-9186-y
19.
Chumacero-Polanco
,
E. A.
, and
Yang
,
J.
,
2016
, “
A Review on Human Motion Prediction in Sit to Stand and Lifting Tasks
,”
ASME
Paper No. DETC2016-59891.10.1115/DETC2016-59891
20.
Zaman
,
R.
,
Xiang
,
Y.
,
Cruz
,
J.
, and
Yang
,
J.
,
2021
, “
Two-Dimensional Versus Three-Dimensional Symmetric Lifting Motion Prediction Models: A Case Study
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), pp.
1
21
.10.1115/1.4049217
21.
Rakshit
,
R.
,
Xiang
,
Y. J.
, and
Yang
,
J. M.
,
2020
, “
Dynamic-Joint-Strength-Based Two-Dimensional Symmetric Maximum Weight-Lifting Simulation: Model Development and Validation
,”
Proc. Inst. Mech. Eng. Part H-J. Eng. Med.
,
234
(
7
), pp.
660
673
.10.1177/0954411920913374
22.
Gazula
,
H.
,
Chang
,
C.-C.
,
Lu
,
M.-L.
, and
Hsiang
,
S. M.
,
2015
, “
Using Mutual Information to Capture Major Concerns of Postural Control in a Tossing Activity
,”
J. Biomech.
,
48
(
6
), pp.
1105
1111
.10.1016/j.jbiomech.2015.01.022
23.
Xiang
,
Y.
,
Tahmid
,
S.
,
Owens
,
P.
, and
Yang
,
J.
,
2020
, “
Two-Dimensional Symmetric Box Delivery Motion Prediction and Validation: Subtask-Based Optimization Method
,”
Appl. Sci.
,
10
(
24
), p.
8798
.10.3390/app10248798
24.
Mital
,
A.
,
Nicholson
,
A. S.
, and
Ayoub
,
M. M.
,
1997
,
A Guide to Manual Materials Handling
,
Taylor & Francis
, London,
UK
.
25.
Shoushtari
,
A. L.
, and
Abedi
,
P.
,
2012
, “Realistic Dynamic Posture Prediction of Humanoid Robot: Manual Lifting Task Simulation,” Lecture Notes in Artificial Intelligence, Springer, Heidelberg, pp.
565
578
.
26.
Betts
,
J.
, and
Kolmanovsky
,
I.
,
2002
, “
Practical Methods for Optimal Control Using Nonlinear Programming
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
B68
B68
.10.1115/1.1483351
27.
Dembia
,
C. L.
,
Bianco
,
N. A.
,
Falisse
,
A.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2020
, “
Opensim Moco: Musculoskeletal Optimal Control
,”
PLOS Comput. Biol.
,
16
(
12
), p.
e1008493
.10.1371/journal.pcbi.1008493
28.
Kelly
,
M.
,
2017
, “
An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation
,”
SIAM Rev.
,
59
(
4
), pp.
849
904
.10.1137/16M1062569
29.
Lee
,
L.-F.
, and
Umberger
,
B. R.
,
2016
, “
Generating Optimal Control Simulations of Musculoskeletal Movement Using Opensim and Matlab
,”
PeerJ
,
4
, p.
e1638
.10.7717/peerj.1638
30.
Seth
,
A.
,
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Habib
,
A.
,
Dembia
,
C. L.
,
Dunne
,
J. J.
,
Ong
,
C. F.
, et al.,
2018
, “
Opensim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement
,”
PLOS Comput. Biol.
,
14
(
7
), p.
e1006223
.10.1371/journal.pcbi.1006223
31.
Rajagopal
,
A.
,
Dembia
,
C. L.
,
Demers
,
M. S.
,
Delp
,
D. D.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2016
, “
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2068
2079
.10.1109/TBME.2016.2586891
32.
Xiang
,
Y.
,
Arora
,
J. S.
,
Rahmatalla
,
S.
, and
Abdel-Malek
,
K.
,
2009
, “
Optimization-Based Dynamic Human Walking Prediction: One Step Formulation
,”
Int. J. Numer. Methods Eng.
,
79
(
6
), pp.
667
695
.10.1002/nme.2575
33.
Abdel-Malek
,
K.
, and
Karim
,
A.
,
2013
,
Human Motion Simulation
,
Elsevier
, Amsterdam, The Netherlands.
34.
Hsiang
,
S. H.
, and
Ayoub
,
M. M.
,
1994
, “
Development of Methodology in Biomechanical Simulation of Manual Lifting
,”
Int. J. Ind. Ergonom.
,
13
(
4
), pp.
271
288
.10.1016/0169-8141(94)90085-X
35.
Harari
,
Y.
,
Bechar
,
A.
, and
Riemer
,
R.
,
2020
, “
Workers' Biomechanical Loads and Kinematics During Multiple-Task Manual Material Handling
,”
Appl. Ergonom.
,
83
(
102985
), p.
102985
.10.1016/j.apergo.2019.102985
36.
Anderson
,
C. K.
,
Chaffin
,
D. B.
, and
Herrin
,
G. D.
,
1986
, “
A Study of Lumbosacral Orientation Under Varied Static Loads
,”
Spine
,
11
(
5
), pp.
456
462
.10.1097/00007632-198606000-00012
37.
Zaman
,
R.
,
Xiang
,
Y.
,
Rakshit
,
R.
, and
Yang
,
J.
,
2019
, “
Muscle Force Prediction in Opensim Using Skeleton Motion Optimization Results as Input Data
,”
ASME
Paper No. DETC2019-97520.10.1115/DETC2019-97520
38.
Akhavanfar
,
M.
,
Uchida
,
T. K.
,
Clouthier
,
A. L.
, and
Graham
,
R. B.
,
2022
, “
Sharing the Load: Modeling Loads in Opensim to Simulate Two-Handed Lifting
,”
Multibody Syst. Dyn.
,
54
(
2
), pp.
213
234
.10.1007/s11044-021-09808-7
39.
Millard
,
M.
,
Sreenivasa
,
M.
, and
Mombaur
,
K.
,
2017
, “
Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control
,”
Front. Rob. AI
,
4
(
41
), pp.
1
12
.10.3389/frobt.2017.00041
40.
Harant
,
M.
,
Sreenivasa
,
M.
,
Millard
,
M.
,
Sarabon
,
N.
, and
Mombaur
,
K.
, “
Parameter Optimization for Passive Spinal Exoskeletons Based on Experimental Data and Optimal Control
,” Proceedings 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (
Humanoids
), Birmingham, UK, Nov. 15–17, pp.
535
540
.10.1109/HUMANOIDS.2017.8246924
41.
Catelli
,
D. S.
,
Wesseling
,
M.
,
Jonkers
,
I.
, and
Lamontagne
,
M.
,
2019
, “
A Musculoskeletal Model Customized for Squatting Task
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
1
), pp.
21
24
.10.1080/10255842.2018.1523396
42.
Sadeghi
,
M.
,
Emadi Andani
,
M.
,
Bahrami
,
F.
, and
Parnianpour
,
M.
,
2013
, “
Trajectory of Human Movement During Sit to Stand: A New Modeling Approach Based on Movement Decomposition and Multi-Phase Cost Function
,”
Exp. Brain Res.
,
229
(
2
), pp.
221
234
.10.1007/s00221-013-3606-1
43.
National Technical Committee on Ergonomics of Standardization Administration,
1988
, “
Human Dimensions of Chinese Adults
,” National Technical Committee on Ergonomics of Standardization Administration, accessed Mar. 28, 2022, http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=A78583489235BF9BF9EE253E74DC76B9
You do not currently have access to this content.