Abstract

Knowledge of anterior–posterior (AP) movement of the femoral condyles on the tibia in healthy knees serves to assess whether an artificial knee restores natural movement. Two methods for identifying AP positions and hence condylar movements include: (1) the flexion facet center (FFC) and (2) the lowest point (LP) methods. The objectives were to determine (1) agreement between the two methods and (2) whether addition of articular cartilage and/or smoothing significantly affects AP positions. Magnetic resonance (MR) images of healthy knees were obtained from eleven subjects, who subsequently performed a dynamic, weight-bearing deep knee bend under fluoroscopy. Four different types of MR models of the distal femur were created: femur, smoothed femur, femur with articular cartilage, and femur with smoothed articular cartilage. In the medial and lateral compartments for the femur with smoothed articular cartilage at 0 deg flexion, mean AP positions of the LPs were 7.7 mm and 5.4 mm more anterior than those of the FFCs, respectively (p < 0.0001, p = 0.0002) and limits of agreement were ±5.5 mm. In the flexion range 30 deg to 90 deg, differences in mean AP positions were 1.5 mm or less and limits of agreement were bounded by ±2.4 mm. Differences in mean AP positions between model types were <1.3 mm for both LPs and FFCs. Since omitting articular cartilage from three-dimensional (3D) models of the femur minimally affected AP positions, faster and less expensive imaging techniques such as computed-tomography (CT) can be used to generate 3D bone models for kinematic analysis. In addition, the LP method is preferred over the FFC method because of its inherent accuracy in indicating the AP position of the instant center of curvature of the femoral condyles which varies with the knee in extension versus flexion.

References

1.
Kurtz
,
S. M.
,
Ong
,
K. L.
,
Lau
,
E.
, and
Bozic
,
K. J.
,
2014
, “
Impact of the Economic Downturn on Total Joint Replacement Demand in the United States: Updated Projections to 2021
,”
J. Bone Jt. Surg. Am.
,
96
(
8
), pp.
624
630
.10.2106/JBJS.M.00285
2.
Noble
,
P. C.
,
Conditt
,
M. A.
,
Cook
,
K. F.
, and
Mathis
,
K. B.
,
2006
, “
The John Insall Award: Patient Expectations Affect Satisfaction With Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
452
, pp.
35
43
.10.1097/01.blo.0000238825.63648.1e
3.
Baker
,
P. N.
,
van der Meulen
,
J. H.
,
Lewsey
,
J.
, and
Gregg
,
P. J.
,
2007
, “
The Role of Pain and Function in Determining Patient Satisfaction After Total Knee Replacement. Data From the National Joint Registry for England and Wales
,”
J. Bone. Jt. Surg. Ser. B.
,
89-B
(
7
), pp.
893
900
.10.1302/0301-620X.89B7.19091
4.
Bourne
,
R. B.
,
Chesworth
,
B. M.
,
Davis
,
A. M.
,
Mahomed
,
N. N.
, and
Charron
,
K. D. J.
,
2010
, “
Patient Satisfaction After Total Knee Arthroplasty: Who is Satisfied and Who is Not?
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
57
63
.10.1007/s11999-009-1119-9
5.
Becker
,
R.
,
Döring
,
C.
,
Denecke
,
A.
, and
Brosz
,
M.
,
2011
, “
Expectation, Satisfaction and Clinical Outcome of Patients After Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
19
(
9
), pp.
1433
1441
.10.1007/s00167-011-1621-y
6.
Miner
,
A. L.
,
Lingard
,
E. A.
,
Wright
,
E. A.
,
Sledge
,
C. B.
,
Katz
,
J. N.
,
Gillespie
,
W.
,
Howie
,
C.
,
Annan
,
I.
,
Abernathy
,
P.
,
Gibson
,
A.
,
Lane
,
J.
,
Pinder
,
I.
,
Weir
,
D.
,
Brewster
,
N.
,
Bettinson
,
K.
,
Needhoff
,
M.
,
Jackson
,
R.
,
Wilton
,
T.
,
Howard
,
P.
,
Forster
,
I.
,
Szyprt
,
P.
,
Moran
,
C.
,
Whitaker
,
D.
,
Bullock
,
M.
,
Hinchcliffe
,
Z.
,
Learmonth
,
I.
,
Newman
,
J.
,
Ackroyd
,
C.
,
Langkamer
,
G.
,
Spencer
,
R.
,
Shannon
,
M.
,
Smith
,
E.
,
Dixon
,
J.
,
Whitehouse
,
S.
,
Ewald
,
F.
,
Poss
,
R.
,
Wright
,
J.
,
Martin
,
S.
,
Kwon
,
J.
,
Valderrama
,
Y.
,
Harwin
,
S.
,
Lichardi
,
M.
,
Mehlhoff
,
M.
,
Weiler
,
L.
,
Cahalan
,
T.
,
Cronk
,
R.
,
Sandago
,
A.
,
Rackermann
,
S.
,
McLaughlin
,
E.
,
Lewis
,
P.
,
Bauze
,
R.
,
Stevenson
,
T.
,
Morrison
,
G.
, and
Clasohm
,
J.
,
2003
, “
Knee Range of Motion After Total Knee Arthroplasty: How Important is This as an Outcome Measure?
,”
J. Arthroplasty
,
18
(
3
), pp.
286
294
.10.1054/arth.2003.50046
7.
Lange
,
T.
,
Schmitt
,
J.
,
Kopkow
,
C.
,
Rataj
,
E.
,
Günther
,
K. P.
, and
Lützner
,
J.
,
2017
, “
What Do Patients Expect From Total Knee Arthroplasty? A Delphi Consensus Study on Patient Treatment Goals
,”
J. Arthroplasty
,
32
(
7
), pp.
2093
2099
.10.1016/j.arth.2017.01.053
8.
Asano
,
T.
,
Akagi
,
M.
,
Tanaka
,
K.
,
Tamura
,
J.
, and
Nakamura
,
T.
,
2001
, “
In Vivo Three-Dimensional Knee Kinematics Using a Biplanar Image-Matching Technique
,”
Clin. Orthop. Relat. Res.
,
388
, pp.
157
166
.10.1097/00003086-200107000-00023
9.
Pinskerova
,
V.
,
Johal
,
P.
,
Nakagawa
,
S.
,
Sosna
,
A.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M. A. R.
,
2004
, “
Does the Femur Roll-Back With Flexion?
,”
J. Bone. Jt. Surg. Ser. B
,
86-B
(
6
), pp.
925
931
.10.1302/0301-620X.86B6.14589
10.
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A. R.
,
2000
, “
Tibiofemoral Movement 1: The Shape and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee
,”
J. Bone. Jt. Surg. Ser. B.
,
82-B
(
8
), pp.
1189
1195
.10.1302/0301-620X.82B8.0821189
11.
Nicolet-Petersen
,
S.
,
Saiz
,
A.
,
Shelton
,
T.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2020
, “
Small Differences in Tibial Contact Locations Following Kinematically Aligned TKA From the Native Contralateral Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
28
(
9
), pp.
2893
2904
.10.1007/s00167-019-05658-1
12.
Martelli
,
S.
, and
Pinskerova
,
V.
,
2002
, “
The Shapes of the Tibial and Femoral Articular Surfaces in Relation to Tibiofemoral Movement
,”
J. Bone. Jt. Surg. Ser. B
,
84-B
(
4
), pp.
607
613
.10.1302/0301-620X.84B4.0840607
13.
Eckstein
,
F.
,
Lemberger
,
B.
,
Gratzke
,
C.
,
Hudelmaier
,
M.
,
Glaser
,
C.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
2005
, “
In Vivo Cartilage Deformation After Different Types of Activity and Its Dependence on Physical Training Status
,”
Ann. Rheum. Dis.
,
64
(
2
), pp.
291
295
.10.1136/ard.2004.022400
14.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
(
9
), pp.
705
709
.10.1016/0021-9290(88)90280-1
15.
Banks
,
S. A.
,
Markovich
,
G. D.
, and
Hodge
,
W. A.
,
1997
, “
In Vivo Kinematics of Cruciate-Retaining and -Substituting Knee Arthroplasties
,”
J. Arthroplasty
,
12
(
3
), pp.
297
304
.10.1016/S0883-5403(97)90026-7
16.
Hoff
,
W. A.
,
Komistek
,
R. D.
,
Dennis
,
D. A.
,
Gabriel
,
S. M.
, and
Walker
,
S. A.
,
1998
, “
Three-Dimensional Determination of Femoral-Tibial Contact Positions Under In Vivo Conditions Using Fluoroscopy
,”
Clin. Biomech.
,
13
(
7
), pp.
455
472
.10.1016/S0268-0033(98)00009-6
17.
Walker
,
P. S.
,
Heller
,
Y.
,
Yildirim
,
G.
, and
Immerman
,
I.
,
2011
, “
Reference Axes for Comparing the Motion of Knee Replacements With the Anatomic Knee
,”
Knee
,
18
(
5
), pp.
312
316
.10.1016/j.knee.2010.07.005
18.
Martin Bland
,
J.
, and
Altman
,
D. G.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
327
(
8476
), pp.
307
310
.10.1016/S0140-6736(86)90837-8
19.
Defrate
,
L. E.
,
Sun
,
H.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2004
, “
In Vivo Tibiofemoral Contact Analysis Using 3D MRI-Based Knee Models
,”
J. Biomech.
,
37
(
10
), pp.
1499
1504
.10.1016/j.jbiomech.2004.01.012
20.
Li
,
G.
,
Sang
,
E. P.
,
DeFrate
,
L. E.
,
Schutzer
,
M. E.
,
Ji
,
L.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
,
2005
, “
The Cartilage Thickness Distribution in the Tibiofemoral Joint and Its Correlation With Cartilage-to-Cartilage Contact
,”
Clin. Biomech.
,
20
(
7
), pp.
736
744
.10.1016/j.clinbiomech.2005.04.001
21.
Koo
,
S.
,
Rylander
,
J. H.
, and
Andriacchi
,
T. P.
,
2011
, “
Knee Joint Kinematics During Walking Influences the Spatial Cartilage Thickness Distribution in the Knee
,”
J. Biomech.
,
44
(
7
), pp.
1405
1409
.10.1016/j.jbiomech.2010.11.020
22.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.10.1016/j.jbiomech.2004.01.025
23.
Freeman
,
M. A. R.
, and
Pinskerova
,
V.
,
2005
, “
The Movement of the Normal Tibio-Femoral Joint
,”
J. Biomech.
,
38
(
2
), pp.
197
208
.10.1016/j.jbiomech.2004.02.006
24.
McPherson
,
A.
,
Kärrholm
,
J.
,
Pinskerova
,
V.
,
Sosna
,
A.
, and
Martelli
,
S.
,
2005
, “
Imaging Knee Position Using MRI, RSA/CT and 3D Digitization
,”
J. Biomech.
,
38
(
2
), pp.
263
268
.10.1016/j.jbiomech.2004.02.007
25.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.10.1016/j.jbiomech.2009.05.003
26.
Leszko
,
F.
,
Hovinga
,
K. R.
,
Lerner
,
A. L.
,
Komistek
,
R. D.
, and
Mahfouz
,
M. R.
,
2011
, “
In Vivo Normal Knee Kinematics: Is Ethnicity or Gender an Influencing Factor?
,”
Clin. Orthop. Relat. Res.
,
469
(
1
), pp.
95
106
.10.1007/s11999-010-1517-z
27.
Gray
,
H. A.
,
Guan
,
S.
,
Young
,
T. J.
,
Dowsey
,
M. M.
,
Choong
,
P. F.
, and
Pandy
,
M. G.
,
2020
, “
Comparison of Posterior-Stabilized, Cruciate-Retaining, and Medial-Stabilized Knee Implant Motion During Gait
,”
J. Orthop. Res.
,
38
(
8
), pp.
1753
1768
.10.1002/jor.24613
28.
Tanifuji
,
O.
,
Sato
,
T.
,
Kobayashi
,
K.
,
Mochizuki
,
T.
,
Koga
,
Y.
,
Yamagiwa
,
H.
,
Omori
,
G.
, and
Endo
,
N.
,
2011
, “
Three-Dimensional In Vivo Motion Analysis of Normal Knees Using Single-Plane Fluoroscopy
,”
J. Orthop. Sci.
,
16
(
6
), pp.
710
718
.10.1007/s00776-011-0149-9
29.
Yin
,
L.
,
Chen
,
K.
,
Guo
,
L.
,
Cheng
,
L.
,
Wang
,
F.
, and
Yang
,
L.
,
2015
, “
Identifying the Functional Flexion-Extension Axis of the Knee: An In-Vivo Kinematics Study
,”
PLoS One
,
10
(
6
), p.
e0128877
.10.1371/journal.pone.0128877
30.
White
,
D.
,
Chelule
,
K. L.
, and
Seedhom
,
B. B.
,
2008
, “
Accuracy of MRI versus CT Imaging With Particular Reference to Patient Specific Templates for Total Knee Replacement Surgery
,”
Int. J. Med. Robot.
,
4
(
3
), pp.
224
231
.10.1002/rcs.201
31.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
,
43
(
6
), pp.
638
649
.10.1109/10.495283
32.
Fregly
,
B. J.
,
Rahman
,
H. A.
, and
Banks
,
S. A.
,
2005
, “
Theoretical Accuracy of Model-Based Shape Matching for Measuring Natural Knee Kinematics With Single-Plane Fluoroscopy
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
692
699
.10.1115/1.1933949
33.
Prins
,
A. H.
,
Kaptein
,
B. L.
,
Stoel
,
B. C.
,
Reiber
,
J. H. C.
, and
Valstar
,
E. R.
,
2010
, “
Detecting Femur-Insert Collisions to Improve Precision of Fluoroscopic Knee Arthroplasty Analysis
,”
J. Biomech.
,
43
(
4
), pp.
694
700
.10.1016/j.jbiomech.2009.10.023
34.
Simileysky
,
A.
, and
Hull
,
M. L.
,
2022
, “
Repeatability, Reproducibility, and Agreement of Three Methods for Finding the Mechanical Axis of the Human Tibia
,”
Comp. Meth. Biomech. Biomed. Eng.
, epub, pp.
1
9
. 10.1080/10255842.2021.2012166
35.
Chung
,
B. J.
,
Kang
,
Y. G.
,
Chang
,
C. B.
,
Kim
,
S. J.
, and
Kim
,
T. K.
,
2009
, “
Differences Between Sagittal Femoral Mechanical and Distal Reference Axes Should Be Considered in Navigated TKA
,”
Clin. Orthop. Relat. Res.
,
467
(
9
), pp.
2403
2413
.10.1007/s11999-009-0762-5
36.
Han
,
H. S.
,
Chang
,
C. B.
,
Seong
,
S. C.
,
Lee
,
S.
, and
Lee
,
M. C.
,
2008
, “
Evaluation of Anatomic References for Tibial Sagittal Alignment in Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
16
(
4
), pp.
373
377
.10.1007/s00167-008-0486-1
37.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
,
2005
, “
The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
,
20
(
8
), pp.
1060
1067
.10.1016/j.arth.2004.08.005
38.
Zhou
,
C.
,
Zhang
,
Z.
,
Rao
,
Z.
,
Foster
,
T.
,
Bedair
,
H.
, and
Li
,
G.
,
2021
, “
Physiological Articular Contact Kinematics and Morphological Femoral Condyle Translations of the Tibiofemoral Joint
,”
J. Biomech.
,
123
, p.
110536
.10.1016/j.jbiomech.2021.110536
39.
Koo
,
S.
,
Giori
,
N. J.
,
Gold
,
G. E.
,
Dyrby
,
C. O.
, and
Andriacchi
,
T. P.
,
2009
, “
Accuracy of 3D Cartilage Models Generated From MR Images is Dependent on Cartilage Thickness: Laser Scanner Based Validation of In Vivo Cartilage
,”
ASME J. Biomech. Eng.
,
131
(
12
), p.
121004
.10.1115/1.4000087
40.
Kornaat
,
P. R.
,
Koo
,
S.
,
Andriacchi
,
T. P.
,
Bloem
,
J. L.
, and
Gold
,
G. E.
,
2006
, “
Comparison of Quantitative Cartilage Measurements Acquired on Two 3.0T MRI Systems From Different Manufacturers
,”
J. Magn. Reson. Imaging
,
23
(
5
), pp.
770
773
.10.1002/jmri.20561
41.
Bushberg
,
J. T.
,
Seibert
,
J. A.
,
Leidholdt
,
E. M.
, and
Boone
,
J. M.
,
2012
,
The Essential Physics of Medical Imaging
,
Lippincott Williams and Wilkins
,
Philadelphia, PA
.
42.
Ibrahim
,
R.
,
Samian
,
S. D.
,
Mazli
,
M.
,
Amrizal
,
M.
, and
Aljunid
,
S. M.
,
2012
, “
Cost of Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) Scan in UKMMC
,”
BMC Health Serv. Res.
,
12
, Article No. P
11
.10.1186/1472-6963-12-S1-P11
43.
Rehana
,
K.
,
Tabish
,
S. A.
,
Gojwari
,
T.
,
Ahmad
,
R.
, and
Abdul
,
H.
,
2013
, “
Unit Cost of CT Scan and MRI at a Large Tertiary Care Teaching Hospital in North India
,”
Health (New York)
,
5
(
12
), pp.
2059
2063
.10.4236/health.2013.512279
44.
You
,
B. M.
,
Siy
,
P.
,
Anderst
,
W.
, and
Tashman
,
S.
,
2001
, “
In Vivo Measurement of 3-D Skeletal Kinematics From Sequences of Biplane Radiographs: Application to Knee Kinematics
,”
IEEE Trans. Med. Imaging
,
20
(
6
), pp.
514
525
.10.1109/42.929617
45.
Moro-Oka
,
T. A.
,
Hamai
,
S.
,
Miura
,
H.
,
Shimoto
,
T.
,
Higaki
,
H.
,
Fregly
,
B. J.
,
Iwamoto
,
Y.
, and
Banks
,
S. A.
,
2008
, “
Dynamic Activity Dependence of In Vivo Normal Knee Kinematics
,”
J. Orthop. Res.
,
26
(
4
), pp.
428
434
.10.1002/jor.20488
46.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
47.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
356
, pp.
111
118
.10.1097/00003086-199811000-00016
48.
Röstlund
,
T.
,
Carlsson
,
L.
,
Albrektsson
,
B.
, and
Albrektsson
,
T.
,
1989
, “
Morphometrical Studies of Human Femoral Condyles
,”
J. Biomed. Eng.
,
11
(
6
), pp.
442
448
.10.1016/0141-5425(89)90037-X
49.
Nuño
,
N.
, and
Ahmed
,
A. M.
,
2003
, “
Three-Dimensional Morphometry of the Femoral Condyles
,”
Clin. Biomech.
,
18
(
10
), pp.
924
932
.10.1016/S0268-0033(03)00172-4
50.
Kosel
,
J.
,
Giouroudi
,
I.
,
Scheffer
,
C.
,
Dillon
,
E.
, and
Erasmus
,
P.
,
2010
, “
Anatomical Study of the Radius and Center of Curvature of the Distal Femoral Condyle
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091002
.10.1115/1.4002061
51.
Simileysky
,
A.
,
Ridenour
,
D.
, and
Hull
,
M. L.
,
2021
, “
Circle-Based Model to Estimate Error in Using the Lowest Points to Indicate Locations of Contact Developed by the Femoral Condyles on the Tibial Insert in Total Knee Arthroplasty
,”
J. Biomech.
,
120
, p.
110365
.10.1016/j.jbiomech.2021.110365
52.
Eckhoff
,
D. G.
,
Bach
,
J. M.
,
Spitzer
,
V. M.
,
Reinig
,
K. D.
,
Bagur
,
M. M.
,
Baldini
,
T. H.
, and
Flannery
,
N. M. P.
,
2005
, “
Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Reality
,”
J. Bone Jt. Surg.
,
87
(Suppl 2), pp.
71
80
.10.2106/JBJS.E.00440
53.
Gray
,
H. A.
,
Guan
,
S.
,
Thomeer
,
L. T.
,
Schache
,
A. G.
,
de Steiger
,
R.
, and
Pandy
,
M. G.
,
2019
, “
Three-Dimensional Motion of the Knee-Joint Complex During Normal Walking Revealed by Mobile Biplane x-Ray Imaging
,”
J. Orthop. Res.
,
37
(
3
), pp.
615
630
.10.1002/jor.24226
You do not currently have access to this content.