Abstract

Tears in the annulus fibrosus (AF) of the intervertebral disk (IVD) occur due to multiaxial loading on the spine. However, most existing AF failure studies measure uniaxial stress, not the multiaxial stress at failure. Delamination theory, which requires advanced structural knowledge and knowledge about the interactions between the AF fibers and matrix, has historically been used to understand and predict AF failure. Alternatively, a simple method, the Tsai-Hill yield criteria, could describe multiaxial failure of the AF. This yield criteria uses the known tissue fiber orientation and an equation to establish the multiaxial failure stresses that cause failure. This paper presents a method to test the multiaxial failure stress of the AF experimentally and evaluate the potential for the Tsai-Hill model to predict these failure stresses. Porcine AF was cut into a dogbone shape at three distinct angles relative to the primary lamella direction (parallel, transverse, and oblique). Then, each dogbone was pulled to complete rupture. The Cauchy stress in the material's fiber coordinates was calculated. These multiaxial stress parameters were used to optimize the coefficients of the Tsai-Hill yield. The coefficients obtained for the Tsai-Hill model vary by an order of magnitude between the fiber and transverse directions, and these coefficients provide a good description of the AF multiaxial failure stress. These results establish both an experimental approach and the use of the Tsai-Hill model to explain the anisotropic failure behavior of the tissue.

References

1.
Tamoud
,
A.
,
Zaïri
,
F.
,
Mesbah
,
A.
, and
Zaïri
,
F.
,
2021
, “
Modeling Multiaxial Damage Regional Variation in Human Annulus Fibrosus
,”
Acta Biomater.
,
136
, pp.
375
388
.10.1016/j.actbio.2021.09.017
2.
Shahraki
,
N. M.
,
Fatemi
,
A.
,
Agarwal
,
A.
, and
Goel
,
V. K.
,
2017
, “
Prediction of Clinically Relevant Initiation and Progression of Tears Within Annulus Fibrosus
,”
J. Orthop. Res.
,
35
(
1
), pp.
113
122
.10.1002/jor.23346
3.
Vernon-Roberts
,
B.
,
Moore
,
R. J.
, and
Fraser
,
R. D.
,
2008
, “
The Natural History of Age-Related Disc Degeneration: The Influence of Age and Pathology on Cell Populations in the L4-L5 Disc
,”
Spine (Phila. Pa. 1976)
,
33
(
25
), pp.
2767
2773
.10.1097/BRS.0b013e31817bb989
4.
Vernon-Roberts
,
B.
,
Fazzalari
,
N. L.
, and
Manthey
,
B. A.
,
1997
, “
Pathogenesis of Tears of the Anulus Investigated by Multiple-Level Transaxial Analysis of the T12-L1 Disc
,”
Spine (Phila. Pa. 1976)
,
22
(
22
), pp.
2641
2646
.10.1097/00007632-199711150-00012
5.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensille Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine (Phila. Pa. 1976)
,
21
(
4
), pp.
452
461
.10.1097/00007632-199602150-00009
6.
Briar
,
K. J.
,
Mcmorran
,
J. G.
, and
Gregory
,
D. E.
,
2022
, “
Delamination of the Annulus Fibrosus of the Intervertebral Disc: Using a Bovine Tail Model to Examine Effect of Separation Rate
,”
Front. Bioeng. Biotechnol.
,
10
(
June
), pp.
1
7
.10.3389/fbioe.2022.883268
7.
Sinopoli
,
S. I.
, and
Gregory
,
D. E.
,
2022
, “
A Novel Testing Method to Quantify Mechanical Properties of the Intact Annulus Fibrosus Ring From Rat-Tail Intervertebral Discs
,”
ASME J. Biomech. Eng.
,
144
(
11
), p.
114503
.10.1115/1.4054799
8.
Kasra
,
M.
,
Parnianpour
,
M.
,
Shirazi-Adl
,
A.
,
Wang
,
J. L.
, and
Grynpas
,
M. D.
,
2004
, “
Effect of Strain Rate on Tensile Properties of Sheep Disc Anulus Fibrosus
,”
Technol. Heal. Care
,
12
(
4
), pp.
333
342
.10.3233/THC-2004-12405
9.
Iatridis
,
J. C.
,
MacLean
,
J. J.
, and
Ryan
,
D. A.
,
2005
, “
Mechanical Damage to the Intervertebral Disc Annulus Fibrosus Subjected to Tensile Loading
,”
J. Biomech.
,
38
(
3
), pp.
557
565
.10.1016/j.jbiomech.2004.03.038
10.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Latridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine (Phila. Pa. 1976)
,
19
(
12
), pp.
1310
1319
.10.1097/00007632-199406000-00002
11.
Monaco
,
L. A.
,
Dewitte-Orr
,
S. J.
, and
Gregory
,
D. E.
,
2016
, “
A Comparison Between Porcine, Ovine, and Bovine Intervertebral Disc Anatomy and Single Lamella Annulus Fibrosus Tensile Properties
,”
J. Morphol.
,
277
(
2
), pp.
244
251
.10.1002/jmor.20492
12.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
,
2012
, “
An Examination of the Mechanical Properties of the Annulus Fibrosus: The Effect of Vibration on the Intra-Lamellar Matrix Strength
,”
Med. Eng. Phys.
,
34
(
4
), pp.
472
477
.10.1016/j.medengphy.2011.08.007
13.
Isaacs
,
J. L.
,
Vresilovic
,
E.
,
Sarkar
,
S.
, and
Marcolongo
,
M.
,
2014
, “
Role of Biomolecules on Annulus Fibrosus Micromechanics: Effect of Enzymatic Digestion on Elastic and Failure Properties
,”
J. Mech. Behav. Biomed. Mater.
,
40
, pp.
75
84
.10.1016/j.jmbbm.2014.08.012
14.
Gregory
,
D. E.
,
Bae
,
W. C.
, and
Sah
,
R. L.
,
2012
, “
Anular Delamination Strength of Human Lumbar Intervertebral Disc
,”
Eur. Spine J.
,
21
(
9
), pp.
1716
1723
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459123/
15.
Green
,
T. P.
,
Adams
,
M. A.
, and
Dolan
,
P.
,
1993
, “
Tensile Properties of the Annulus Fibrosus - II. Ultimate Tensile Strength and Fatigue Life
,”
Eur. Spine J.
,
2
(
4
), pp.
209
214
.10.1007/BF00299448
16.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
(
6
), pp.
814
819
.10.1002/jor.1100150605
17.
Tavakoli
,
J.
, and
Costi
,
J. J.
,
2018
, “
New Insights Into the Viscoelastic and Failure Mechanical Properties of the Elastic Fiber Network of the Inter-Lamellar Matrix in the Annulus Fibrosus of the Disc
,”
Acta Biomater.
,
77
, pp.
292
300
.10.1016/j.actbio.2018.07.023
18.
Werbner
,
B.
,
Spack
,
K.
, and
O'Connell
,
G. D.
,
2019
, “
Bovine Annulus Fibrosus Hydration Affects Rate-Dependent Failure Mechanics in Tension
,”
J. Biomech.
,
89
, pp.
34
39
.10.1016/j.jbiomech.2019.04.008
19.
Werbner
,
B.
,
Lee
,
M.
,
Lee
,
A.
,
Yang
,
L.
,
Habib
,
M.
,
Fields
,
A. J.
, and
O'Connell
,
G. D.
,
2022
, “
Non-Enzymatic Glycation of Annulus Fibrosus Alters Tissue-Level Failure Mechanics in Tension
,”
J. Mech. Behav. Biomed. Mater.
,
126
(
June 2021
), p.
104992
.10.1016/j.jmbbm.2021.104992
20.
Werbner
,
B.
,
Zhou
,
M.
, and
O'Connell
,
G.
,
2017
, “
A Novel Method for Repeatable Failure Testing of Annulus Fibrosus
,”
ASME J. Biomech. Eng.
,
139
(
11
), p.
111001
.10.1115/1.4037855
21.
Gregory
,
D. E.
,
Veldhuis
,
J. H.
,
Horst
,
C.
,
Wayne Brodland
,
G.
, and
Callaghan
,
J. P.
,
2011
, “
Novel Lap Test Determines the Mechanics of Delamination Between Annular Lamellae of the Intervertebral Disc
,”
J. Biomech.
,
44
(
1
), pp.
97
102
.10.1016/j.jbiomech.2010.08.031
22.
Iatridis
,
J. C.
, and
Gwynn
,
I. A.
,
2004
, “
Mechanisms for Mechanical Damage in the Intervertebral Disc Annulus Fibrosus
,”
J. Biomech.
,
37
(
8
), pp.
1165
1175
.10.1016/j.jbiomech.2003.12.026
23.
Tsai
,
S. W.
, and
Wu
,
E. M.
,
1971
, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
,
5
(
1
), pp.
58
80
.10.1177/002199837100500106
24.
Korenczuk
,
C. E.
,
Votava
,
L. E.
,
Dhume
,
R. Y.
,
Kizilski
,
S. B.
,
Brown
,
G. E.
,
Narain
,
R.
, and
Barocas
,
V. H.
,
2017
, “
Isotropic Failure Criteria Are Not Appropriate for Anisotropic Fibrous Biological Tissues
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071008
.10.1115/1.4036316
25.
Wolfram
,
U.
,
Gross
,
T.
,
Pahr
,
D. H.
,
Schwiedrzik
,
J.
,
Wilke
,
H. J.
, and
Zysset
,
P. K.
,
2012
, “
Fabric-Based Tsai-Wu Yield Criteria for Vertebral Trabecular Bone in Stress and Strain Space
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
218
228
.10.1016/j.jmbbm.2012.07.005
26.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Zadesky
,
S. P.
, and
Arramon
,
Y. P.
,
1999
, “
Application of the Tsai–Wu Quadratic Multiaxial Failure Criterion to Bovine Trabecular Bone
,”
ASME J. Biomech. Eng.
,
121
(
1
), pp.
99
107
.10.1115/1.2798051
27.
Shahraki
,
N. M.
,
Fatemi
,
A.
,
Agarwal
,
A.
, and
Goel
,
V. K.
,
2015
, “
Failure Criteria for Prediction of Clinically Relevant Damage of Annulus Fibrosus
,”
Spine Res.
,
1
(
1
), pp. 1–15.10.21767/2471-8173.100007
28.
Roughley
,
P. J.
,
2004
, “
Biology of Intervertebral Disc Aging and Degeneration: Involvement of the Extracellular Matrix
,”
Spine (Phila. Pa. 1976)
,
29
(
23
), pp.
2691
2699
.10.1097/01.brs.0000146101.53784.b1
29.
Azarnoosh
,
M.
,
Stoffel
,
M.
,
Quack
,
V.
,
Betsch
,
M.
,
Rath
,
B.
,
Tingart
,
M.
, and
Markert
,
B.
,
2017
, “
A Comparative Study of Mechanical Properties of Fresh and Frozen-Thawed Porcine Intervertebral Discs in a Bioreactor Environment
,”
J. Mech. Behav. Biomed. Mater.
,
69
(
August 2016
), pp.
169
177
.10.1016/j.jmbbm.2016.12.010
30.
Thoreson
,
O.
,
Baranto
,
A.
,
Ekström
,
L.
,
Holm
,
S.
,
Hellström
,
M.
, and
Swärd
,
L.
,
2010
, “
The Immediate Effect of Repeated Loading on the Compressive Strength of Young Porcine Lumbar Spine
,”
Knee Surg., Sport. Traumatol. Arthrosc.
,
18
(
5
), pp.
694
701
.10.1007/s00167-009-1001-z
31.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
256
263
.10.1115/1.1374202
32.
O'Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
,
2012
, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling Are Altered With Degeneration
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
493
503
.10.1007/s10237-011-0328-9
33.
Acaroglu
,
E. R.
,
Latridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
A. M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus
,”
Spine (Phila. Pa. 1976)
,
20
(
24
), pp.
2690
2701
.10.1097/00007632-199512150-00010
34.
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2007
, “
Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model
,”
J. Orthop. Res.
,
25
(
4
), pp.
508
516
.10.1002/jor.20324
35.
Tsai
,
S. W.
,
1968
,
Fundamental Aspects of Fiber Reinforced Plastic Composites
,
Interscience
,
New York
.
36.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
New York
.
37.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2000
, “
A Linear Material Model for Fiber-Induced Anisotropy of the Anulus Fibrosus
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
173
179
.10.1115/1.429639
38.
Zhang
,
S.
,
Zarei
,
V.
,
Winkelstein
,
B. A.
, and
Barocas
,
V. H.
,
2018
, “
Multiscale Mechanics of the Cervical Facet Capsular Ligament, With Particular Emphasis on Anomalous Fiber Realignment Prior to Tissue Failure
,”
Biomech. Model. Mechanobiol.
,
17
(
1
), pp.
133
145
.10.1007/s10237-017-0949-8
39.
Nerurkar
,
N. L.
,
Mauck
,
R. L. S.
, and
Elliott
,
D. M.
,
2011
, “
Modeling Interlamellar Interactions in Angle-Ply Biologic Laminates for Annulus Fibrosus Tissue Engineering
,”
Biomech. Model. Mechanobiol.
,
10
(
6
), pp.
973
984
.10.1007/s10237-011-0288-0
40.
O'Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2009
, “
Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111007
.10.1115/1.3212104
You do not currently have access to this content.