Abstract

Force platforms often limit the analysis of human movement to the laboratory. Promising methods for estimating ground reaction forces and moments (GRF&M) can overcome this limitation. The most effective family of methods consists of minimizing a cost, constrained by the subject's dynamic equilibrium, for distributing the force over the contact surface on the ground. The detection of contact surfaces over time is dependent on numerous parameters. This study proposes to evaluate two contact detection methods: the first based on foot kinematics and the second based on pressure sole data. Optimal parameters for these two methods were identified for walking, running, and sidestep cut tasks. The results show that a single threshold in position or velocity is sufficient to guarantee a good estimate. Using pressure sole data to detect contact improves the estimation of the position of the center of pressure (CoP). Both methods demonstrated a similar level of accuracy in estimating ground reaction forces.

References

1.
Fluit
,
R.
,
Andersen
,
M. S.
,
Kolk
,
S.
,
Verdonschot
,
N.
, and
Koopman
,
H. F. J. M.
,
2014
, “
Prediction of Ground Reaction Forces and Moments During Various Activities of Daily Living
,”
J. Biomech.
,
47
(
10
), pp.
2321
2329
.10.1016/j.jbiomech.2014.04.030
2.
Karatsidis
,
A.
,
Bellusci
,
G.
,
Schepers
,
M.
,
de Zee
,
M.
,
Andersen
,
M.
, and
Veltink
,
P.
,
2016
, “
Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture
,”
Sensors
,
17
(
12
), p.
75
.10.3390/s17010075
3.
Oh
,
S. E.
,
Choi
,
A.
, and
Mun
,
J. H.
,
2013
, “
Prediction of Ground Reaction Forces During Gait Based on Kinematics and a Neural Network Model
,”
J. Biomech.
,
46
(
14
), pp.
2372
2380
.10.1016/j.jbiomech.2013.07.036
4.
Forner-Cordero
,
A.
,
Koopman
,
H. J. F. M.
, and
Helm
,
F. C. T. V D.
,
2006
, “
Inverse Dynamics Calculations During Gait With Restricted Ground Reaction Force Information From Pressure Insoles
,”
Gait Posture
,
23
(
2
), pp.
189
199
.10.1016/j.gaitpost.2005.02.002
5.
Honert
,
E. C.
,
Hoitz
,
F.
,
Blades
,
S.
,
Nigg
,
S. R.
, and
Nigg
,
B. M.
,
2022
, “
Estimating Running Ground Reaction Forces From Plantar Pressure During Graded Running
,”
Sensors
,
22
(
9
), p.
3338
.10.3390/s22093338
6.
Muller
,
A.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2020b
, “
Motion-Based Prediction of Hands and Feet Contact Efforts During Asymmetric Handling Tasks
,”
IEEE Trans. Biomed. Eng.
,
67
(
2
), pp.
344
352
.10.1109/TBME.2019.2913308
7.
Demestre
,
L.
,
Morin
,
P.
,
May
,
F.
,
Bideau
,
N.
,
Nicolas
,
G.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2022
, “
Motion-Based Ground Reaction Forces and Moments Prediction Method for Interaction With a Moving and/or Non-Horizontal Structure
,”
ASME J. Biomech. Eng.
,
144
(
11
), p.
114504
.10.1115/1.4054835
8.
Jung
,
Y.
,
Jung
,
M.
,
Ryu
,
J.
,
Yoon
,
S.
,
Park
,
S.-K.
, and
Koo
,
S.
,
2016
, “
Dynamically Adjustable Foot-Ground Contact Model to Estimate Ground Reaction Force During Walking and Running
,”
Gait Posture
,
45
, pp.
62
68
.10.1016/j.gaitpost.2016.01.005
9.
Muller
,
A.
,
Pontonnier
,
C.
,
Robert-Lachaine
,
X.
,
Dumont
,
G.
, and
Plamondon
,
A.
,
2020a
, “
Motion-Based Prediction of External Forces and Moments and Back Loading During Manual Material Handling Tasks
,”
Appl. Ergonom.
,
82
, p.
102935
.10.1016/j.apergo.2019.102935
10.
Skals
,
S.
,
Jung
,
M. K.
,
Damsgaard
,
M.
, and
Andersen
,
M. S.
,
2017
, “
Prediction of Ground Reaction Forces and Moments During Sports-Related Movements
,”
Multibody Syst. Dyn.
,
39
(
3
), pp.
175
195
.10.1007/s11044-016-9537-4
11.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
, et al.,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion–Part I: Ankle, Hip, and Spine. International Society of Biomechanics
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
12.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
(DirkJan) Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
, et al.,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion–Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
13.
MoticonREGO AG
,
2022
, “
Sensor Insole Specification
,” MoticonREGO AG, accessed Nov. 17, 2023, https://moticon.com/wp-content/uploads/2021/09/OpenGo-Sensor-Insole-Specification-A4-RGB-EN-03.03.pdf
14.
Morin
,
P.
,
Muller
,
A.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2022
, “
Evaluation of the Foot Center of Pressure Estimation From Pressure Insoles During Sidestep Cuts, Runs and Walks
,”
Sensors
,
22
(
15
), p.
5628
.10.3390/s22155628
15.
Forrester
,
S. E.
,
2015
, “
Selecting the Number of Trials in Experimental Biomechanics Studies
,”
Int. Biomech.
,
2
(
1
), pp.
62
72
.10.1080/23335432.2015.1049296
16.
Puchaud
,
P.
,
Sauret
,
C.
,
Muller
,
A.
,
Bideau
,
N.
,
Dumont
,
G.
,
Pillet
,
H.
, and
Pontonnier
,
C.
,
2020
, “
Accuracy and Kinematics Consistency of Marker-Based Scaling Approaches on a Lower Limb Model: A Comparative Study With Imagery Data
,”
Comput. Methods Biomech. Biomed. Eng.
,
23
(
3
), pp.
114
125
.10.1080/10255842.2019.1705798
17.
Livet
,
C.
,
Rouvier
,
T.
,
Sauret
,
C.
,
Pillet
,
H.
,
Dumont
,
G.
, and
Pontonnier
,
C.
,
2023
, “
A Penalty Method for Constrained Multibody Kinematics Optimisation Using a Levenberg–Marquardt Algorithm
,”
Comput. Methods Biomech. Biomed. Eng.
,
26
(
7
), pp.
864
875
.10.1080/10255842.2022.2093607
18.
Skogstad
,
S. A.
,
Nymoen
,
K.
,
Høvin
,
M.
,
Holm
,
S.
, and
Jensenius
,
A.
,
2013
, “
Filtering Motion Capture Data for Real-Time Applications
,”
Proceedings of the International Conference on New Interfaces for Musical Expression
, Daejeon, Republic of Korea, May 27–30, pp.
142
147
.https://www.researchgate.net/publication/247159959_Filtering_Motion_Capture_Data_for_Real-Time_Applications
19.
Dumas
,
R.
,
Chèze
,
L.
, and
Verriest
,
J. P.
,
2007
, “
Adjustments to McConville et al. and Young et al. body Segment Inertial Parameters
,”
J. Biomech.
,
40
(
3
), pp.
543
553
.10.1016/j.jbiomech.2006.02.013
20.
Edwards
,
W. B.
,
Derrick
,
T. R.
, and
Hamill
,
J.
,
2017
, “
Time Series Analysis in Biomechanics
,”
Handbook of Human Motion
,
B.
Müller
,
S. I.
Wolf
,
G.-P.
Brueggemann
,
Z.
Deng
,
A.
McIntosh
,
F.
Miller
, and
W. S.
Selbie
, eds.,
Springer International Publishing
,
Cham
, pp.
1
24
.
21.
Muller
,
A.
,
Pontonnier
,
C.
,
Puchaud
,
P.
, and
Dumont
,
G.
,
2019
, “
CusToM: A Matlab Toolbox for Musculoskeletal Simulation
,”
J. Open Source Software
,
4
(
33
), p.
927
.10.21105/joss.00927
22.
Ghoussayni
,
S.
,
Stevens
,
C.
,
Durham
,
S.
, and
Ewins
,
D.
,
2004
, “
Assessment and Validation of a Simple Automated Method for the Detection of Gait Events and Intervals
,”
Gait Posture
,
20
(
3
), pp.
266
272
.10.1016/j.gaitpost.2003.10.001
23.
Catalfamo
,
P.
,
Moser
,
D.
,
Ghoussayni
,
S.
, and
Ewins
,
D.
,
2008
, “
Detection of Gait Events Using an F-Scan in-Shoe Pressure Measurement System
,”
Gait Posture
,
28
(
3
), pp.
420
426
.10.1016/j.gaitpost.2008.01.019
24.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2008
, “
Whole Body Inverse Dynamics Over a Complete Gait Cycle Based Only on Measured Kinematics
,”
J. Biomech.
,
41
(
12
), pp.
2750
2759
.10.1016/j.jbiomech.2008.06.001
25.
Muller
,
A.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2017
, “
Uncertainty Propagation in Multibody Human Model Dynamics
,”
Multibody Syst. Dyn.
,
40
(
2
), pp.
177
192
.10.1007/s11044-017-9566-7
26.
Mo
,
S.
, and
Chow
,
D. H. K.
,
2018
, “
Accuracy of Three Methods in Gait Event Detection During Overground Running
,”
Gait Posture
,
59
, pp.
93
98
.10.1016/j.gaitpost.2017.10.009
27.
Pontonnier
,
C.
,
Livet
,
C.
,
Muller
,
A.
,
Sorel
,
A.
,
Dumont
,
G.
, and
Bideau
,
N.
,
2019
, “
Ground Reaction Forces and Moments Prediction of Challenging Motions: Fencing Lunges
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
Suppl. 1
), pp.
S523
S525
.10.1080/10255842.2020.1715005
You do not currently have access to this content.