Skip Nav Destination
Issues
December 2022
ISSN 0148-0731
EISSN 1528-8951
In this Issue
Special Issue: Data-Driven Methods in Biomechanics
Guest Editorial
Special Issue: Data-Driven Methods in Biomechanics
J Biomech Eng. December 2022, 144(12): 120301.
doi: https://doi.org/10.1115/1.4055830
Topics:
Biomechanics
,
Physics
Research Papers
Data-Driven Simulation of Fisher–Kolmogorov Tumor Growth Models Using Dynamic Mode Decomposition
Alex Viguerie, Malú Grave, Gabriel F. Barros, Guillermo Lorenzo, Alessandro Reali, Alvaro L. G. A. Coutinho
J Biomech Eng. December 2022, 144(12): 121001.
doi: https://doi.org/10.1115/1.4054925
Topics:
Simulation
,
Tumors
,
Errors
,
Computer simulation
,
Cancer
Enhancing Mechanical Metamodels With a Generative Model-Based Augmented Training Dataset
J Biomech Eng. December 2022, 144(12): 121002.
doi: https://doi.org/10.1115/1.4054898
Topics:
Finite element analysis
,
Machine learning
,
Simulation
,
Rotation
,
Trains
,
Displacement
,
Soft tissues
Bayesian Inference With Gaussian Process Surrogates to Characterize Anisotropic Mechanical Properties of Skin From Suction Tests
J Biomech Eng. December 2022, 144(12): 121003.
doi: https://doi.org/10.1115/1.4054929
Topics:
Anisotropy
,
Finite element analysis
,
Inverse problems
,
Mechanical properties
,
Skin
,
Suction
,
Finite element model
,
Probes
,
Deformation
,
Pressure
Universal Solution Manifold Networks (USM-Nets): Non-Intrusive Mesh-Free Surrogate Models for Problems in Variable Domains
J Biomech Eng. December 2022, 144(12): 121004.
doi: https://doi.org/10.1115/1.4055285
Topics:
Approximation
,
Artificial neural networks
,
Bifurcation
,
Geometry
,
Manifolds
,
Pressure
,
Cavities
,
Boundary-value problems
,
Shapes
,
Reynolds number
Multi-Fidelity Gaussian Process Surrogate Modeling of Pediatric Tissue Expansion
J Biomech Eng. December 2022, 144(12): 121005.
doi: https://doi.org/10.1115/1.4055276
Topics:
Biological tissues
,
Deformation
,
Pediatrics
,
Skin
,
Uncertainty
,
Finite element model
A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
J Biomech Eng. December 2022, 144(12): 121006.
doi: https://doi.org/10.1115/1.4055238
Topics:
Dynamics (Mechanics)
,
Muscle
,
Musculoskeletal system
,
Signals
,
Tendons
,
Artificial neural networks
,
Physics
,
Electromyography
Gait Phase Detection in Walking and Stairs Using Machine Learning
J Biomech Eng. December 2022, 144(12): 121007.
doi: https://doi.org/10.1115/1.4055504
Generating Human Arm Kinematics Using Reinforcement Learning to Train Active Muscle Behavior in Automotive Research
J Biomech Eng. December 2022, 144(12): 121008.
doi: https://doi.org/10.1115/1.4055680
Topics:
Muscle
,
Stress
,
Modal assurance criterion
,
Kinematics
,
Control equipment
,
Reinforcement learning
Reducing Geometric Uncertainty in Computational Hemodynamics by Deep Learning-Assisted Parallel-Chain MCMC
J Biomech Eng. December 2022, 144(12): 121009.
doi: https://doi.org/10.1115/1.4055809
Topics:
Algorithms
,
Aorta
,
Chain
,
Computational fluid dynamics
,
Flow (Dynamics)
,
Hemodynamics
,
Modeling
,
Simulation
,
Uncertainty
,
Artificial neural networks
Neural Network Approaches for Soft Biological Tissue and Organ Simulations
J Biomech Eng. December 2022, 144(12): 121010.
doi: https://doi.org/10.1115/1.4055835
Topics:
Artificial neural networks
,
B-splines
,
Simulation
,
Soft tissues
,
Finite element analysis
,
Modeling
Feasibility of Vascular Parameter Estimation for Assessing Hypertensive Pregnancy Disorders
Georgios Kissas, Eileen Hwuang, Elizabeth W. Thompson, Nadav Schwartz, John A. Detre, Walter R. Witschey, Paris Perdikaris
J Biomech Eng. December 2022, 144(12): 121011.
doi: https://doi.org/10.1115/1.4055679
Topics:
Aorta
,
Flow (Dynamics)
,
Magnetic resonance imaging
,
Pressure
,
Vessels
,
Waves
,
Geometry
,
Algorithms
A Physics-Guided Neural Operator Learning Approach to Model Biological Tissues From Digital Image Correlation Measurements
J Biomech Eng. December 2022, 144(12): 121012.
doi: https://doi.org/10.1115/1.4055918
Topics:
Biological tissues
,
Deformation
,
Displacement
,
Modeling
,
Physics
,
Valves
,
Constitutive equations
,
Testing
,
Errors