The paper presents an approach to linearize the set of index 3 nonlinear differential algebraic equations that govern the dynamics of constrained mechanical systems. The proposed method handles heterogeneous systems that might contain flexible bodies, friction, control elements (user-defined differential equations), and nonholonomic constraints. Analytically equivalent to a state-space formulation of the system dynamics in Lagrangian coordinates, the proposed method augments the governing equations and then computes a set of sensitivities that provide the linearization of interest. The attributes associated with the method are the ability to handle large heterogeneous systems, ability to linearize the system in terms of arbitrary user-defined coordinates, and straightforward implementation. The proposed approach has been released in the 2005 version of the MSC.ADAMS/Solver(C++) and compares favorably with a reference method previously available. The approach was also validated against MSC.NASTRAN and experimental results.

1.
Anderson
,
K. S.
, and
Duan
,
S.
, 2000, “
Highly Parallelizable Low Order Dynamics Algorithm for Complex Multi-Rigid-Body Systems
,” AIAA
J. Guid. Control Dyn.
0731-5090,
23
(
2
), pp.
355
364
.
2.
Garcia de Jalon
,
J.
, and
Bayo
,
E.
, 1994,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
.
Springer-Verlag
,
Berlin
.
3.
Featherstone
,
R.
, 1983, “
The Calculation of Robot Dynamics Using Articulated-Body Inertias
,”
Int. J. Robot. Res.
0278-3649,
2
(
1
), pp.
13
30
.
4.
Haug
,
E. J.
, 1989,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, New Jersey
.
5.
Shabana
,
A. A.
, 1998,
Dynamics of Multibody Systems
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
6.
Pars
,
L. A.
, 1965,
A Treatise on Analytical Dynamics
,
John Wiley & Sons
,
New York
.
7.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
, 1989,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.
8.
Orlandea
,
N.
,
Chace
,
M. A.
, and
Calahan
,
D. A.
, 1977, “
A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part I
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
773
779
.
9.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
, 1986, “
QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
183
188
.
10.
Liang
,
C. D.
, and
Lance
,
G. M.
, 1987, “
A Differentiable Null-Space Method for Constrained Dynamic Analysis
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
405
410
.
11.
Wehage
,
R. A.
, and
Haug
,
E. J.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
1050-0472,
104
, pp.
247
255
.
12.
Potra
,
F. A.
, 1993, “
Implementation of Linear Multistep Methods for Solving Constrained Equations of Motion
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
30
(
3
), pp.
774
789
.
13.
Gear
,
C. W.
,
Gupta
,
G.
, and
Leimkuhler
,
B.
, 1985, “
Automatic Integration of the Eulerlagrange Equations with Constraints
,”
J. Comput. Appl. Math.
0377-0427,
12
, pp.
77
90
.
14.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
1
16
.
15.
Atkinson
,
K. E.
, 1989,
An Introduction to Numerical Analysis
, 2nd ed.,
John Wiley & Sons Inc.
,
New York
.
16.
MSCSoftware
, 2005,
ADAMS User Manual
; Also available online at http://www.mscsoftware.comhttp://www.mscsoftware.com.
17.
Corwin
,
L. J.
, and
Szczarba
,
R. H.
, 1982,
Multivariable Calculus
,
Marcel Dekker
,
New York
.
18.
Wilkie
,
W. K.
,
Mirick
,
P. H.
, and
Langston
,
C. W.
, 1997, “
Rotating Shake Test and Modal Analysis of a Model Helicopter Rotor Blade
,” Computing Science Technical Report NASA Technical Memorandum 4760, Vehicle Technology Center,
U.S. Army Research Laboratory
, Langley Research Center, Hampton, Virginia.
19.
MSCSoftware
, 2005,
Nastran User Manual
, Also available online at http://www.mscsoftware.comhttp://www.mscsoftware.com.
20.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
, 2005, “
On the use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,” J. Compt. Nonlin. Dyn., submitted.
21.
Johnson
,
W.
, 1980,
Helicopter Theory
,
Dover Publications, Inc.
,
New York
.
22.
Sohoni
,
V. N.
, and
Whitesell
,
J.
, 1986, “
Automatic Linearization of Constrained Dynamical Models
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
(
8
), pp.
300
304
.
You do not currently have access to this content.