A structure-dependent integration method may experience an unusual overshooting behavior in the steady-state response of a high frequency mode. In order to explore this unusual overshooting behavior, a local truncation error is established from a forced vibration response rather than a free vibration response. As a result, this local truncation error can reveal the root cause of the inaccurate integration of the steady-state response of a high frequency mode. In addition, it generates a loading correction scheme to overcome this unusual overshooting behavior by means of the adjustment the difference equation for displacement. Apparently, these analytical results are applicable to a general structure-dependent integration method.

References

1.
Chang
,
S. Y.
,
2002
, “
Explicit Pseudodynamic Algorithm With Unconditional Stability
,”
ASCE J. Eng. Mech.
,
128
(
9
), pp.
935
947
.
2.
Chang
,
S. Y.
,
2007
, “
Improved Explicit Method for Structural Dynamics
,”
ASCE J. Eng. Mech.
,
133
(
7
), pp.
748
760
.
3.
Chang
,
S. Y.
,
2009
, “
An Explicit Method With Improved Stability Property
,”
Int. J. Numer. Methods Eng.
,
77
(
8
), pp.
1100
1120
.
4.
Belytschko
,
T.
, and
Hughes
,
T. J. R.
,
1983
,
Computational Methods for Transient Analysis
,
Elsevier Science Publishers B.V.
,
Amsterdam, The Netherlands
.
5.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
ASCE J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.
6.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.
7.
Wood
,
W. L.
,
Bossak
,
M.
, and
Zienkiewicz
,
O. C.
,
1981
, “
An Alpha Modification of Newmark's Method
,”
Int. J. Numer. Methods Eng.
,
15
(
10
), pp.
1562
1566
.
8.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
6
), pp.
371
375
.
9.
Chang
,
S. Y.
,
2006
, “
Accurate Representation of External Force in Time History Analysis
,”
ASCE J. Eng. Mech.
,
132
(
1
), pp.
34
45
.
10.
Hughes
,
T. J. R.
,
1987
,
The Finite Element Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
11.
Goudreau
,
G. L.
, and
Taylor
,
R. L.
,
1972
, “
Evaluation of Numerical Integration Methods in Elasto-Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
2
(
1
), pp.
69
97
.
You do not currently have access to this content.