The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.

References

1.
Lauss
,
T.
,
Leitner
,
P.
,
Oberpeilsteiner
,
S.
, and
Steiner
,
W.
,
2015
, “
Energy Optimal Manipulation of an Industrial Robot
,”
ECCOMAS
Thematic Conference on Multibody Dynamics
, Barcelona, Catalonia, Spain, June 29–July 2, pp.
789
798
.http://congress.cimne.com/multibody2015/admin/files/fileabstract/a84.pdf
2.
Bryson
,
A.
, and
Ho
,
Y.
,
1975
,
Applied Optimal Control
,
Hemisphere
,
Washington, DC
.
3.
Haug
,
E.
,
Wehage
,
R.
, and
Mani
,
N.
,
1984
, “
Design Sensitivity Analysis of Large-Scaled Constrained Dynamic Mechanical Systems
,”
J. Mech., Transm., Autom. Des.
,
106
(
2
), pp.
156
162
.
4.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
Mech. Struct. Mach.
,
20
(
1
), pp.
67
92
.
5.
Eberhard
,
P.
,
1996
, “
Adjoint Variable Method for Sensitivity Analysis of Multibody Systems Interpreted as a Continuous, Hybrid Form of Automatic Differentiation
,”
2nd International Workshop on Computational Differentiation
, Santa Fe, NM, SIAM, Philadelphia, PA, pp.
319
328
.
6.
Bottasso
,
C.
,
Croce
,
A.
,
Ghezzi
,
L.
, and
Faure
,
P.
,
2004
, “
On the Solution of Inverse Dynamics and Trajectory Optimization Problems for Multibody Systems
,”
Multibody Syst. Dyn.
,
11
(
1
), pp.
1
22
.
7.
Bertolazzi
,
E.
,
Biral
,
F.
, and
Lio
,
M. D.
,
2005
, “
Symbolic-Numeric Indirect Method for Solving Optimal Control Problems for Large Multibody Systems
,”
Multibody Syst. Dyn.
,
13
(
2
), pp.
233
252
.
8.
Schaffer
,
A.
,
2005
, “
On the Adjoint Formulation of Design Sensitivity Analysis of Multibody Dynamics
,”
Ph.D. thesis
, University of Iowa, Iowa City, IA.http://ir.uiowa.edu/cgi/viewcontent.cgi?article=1278&context=etd
9.
Petzold
,
L.
,
Li
,
S.
,
Cao
,
Y.
, and
Serban
,
R.
,
2006
, “
Sensitivity Analysis for Differential-Algebraic Equations and Partial Differential Equations
,”
Comput. Chem. Eng.
,
30
(
10–12
), pp.
1553
1559
.
10.
Cao
,
Y.
,
Li
,
S.
,
Petzold
,
L.
, and
Serban
,
R.
,
2003
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
1076
1089
.
11.
Steiner
,
W.
, and
Reichl
,
S.
,
2012
, “
The Optimal Control Approach to Dynamical Inverse Problems
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
2
), p.
021010
.
12.
Nachbagauer
,
K.
,
Oberpeilsteiner
,
S.
,
Sherif
,
K.
, and
Steiner
,
W.
,
2014
, “
The Use of the Adjoint Method for Solving Typical Optimization Problems in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061011
.
13.
Süli
,
E.
, and
Mayers
,
D.
,
2003
,
An Introduction to Numerical Analysis
,
Cambridge University Press
,
Oxford, UK
.
14.
Alexe
,
M.
, and
Sandu
,
A.
,
2009
, “
On the Discrete Adjoints of Adaptive Time Stepping Algorithms
,”
J. Comput. Appl. Math.
,
233
(
4
), pp.
1005
1020
.
15.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2000
, “
On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME
Paper No. DETC2005-85096.
16.
Hilber
,
H.
,
Hughes
,
T.
, and
Taylor
,
R.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.
17.
Newmark
,
N.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.
18.
Gavrea
,
B.
,
Negrut
,
D.
, and
Potra
,
F. A.
,
2005
, “
The Newmark Integration Method for Simulation of Multibody Systems: Analytical Considerations
,”
ASME
Paper No. IMECE2005-81770.
19.
Nachbagauer
,
K.
,
Oberpeilsteiner
,
S.
, and
Steiner
,
S.
,
2015
, “
Enhancement of the Adjoint Method by Error Control of Accelerations for Parameter Identification in Multibody Dynamics
,”
Univers. J. Control Autom.
,
3
(
3
), pp.
47
52
.
20.
Betsch
,
P.
,
Quasem
,
M.
, and
Uhlar
,
S.
,
2009
, “
Numerical Integration of Mechanical Systems With Mixed Holonomic and Control Constraints
,”
ECCOMAS
Thematic Conference on Multibody Dynamics
, Warsaw University of Technology, Warszawa, Poland, June 29–July2.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.522.336&rep=rep1&type=pdf
You do not currently have access to this content.