This paper studies inducing robust stable oscillations in nonlinear systems of any order. This goal is achieved through creating stable limit cycles in the closed-loop system. For this purpose, the Lyapunov stability theorem which is suitable for stability analysis of the limit cycles is used. In this approach, the Lyapunov function candidate should have zero value for all the points of the limit cycle and be positive in the other points in the vicinity of it. The proposed robust controller consists of a nominal control law with an additional term that guarantees the robust performance. It is proved that the designed controller results in creating the desirable stable limit cycle in the phase trajectories of the uncertain closed-loop system and leads to induce stable oscillations in the system's output. Additionally, in order to show the applicability of the proposed method, it is applied on two practical systems: a time-periodic microelectromechanical system (MEMS) with parametric errors and a single-link flexible joint robot in the presence of external disturbances. Computer simulations show the effective robust performance of the proposed controllers in generating the robust output oscillations.

References

1.
Hashimoto
,
S.
,
Naka
,
S.
,
Sosorhang
,
U.
, and
Honjo
,
N.
,
2012
, “
Generation of Optimal Voltage Reference for Limit Cycle Oscillation in Digital Control-Based Switching Power Supply
,”
J. Energy Power Eng.
,
6
(
4
), pp.
623
628
.
2.
Biel
,
D.
,
Fossas
,
E.
,
Guinjoan
,
F.
,
Alarcón
,
E.
, and
Poveda
,
A.
,
2001
, “
Application of Sliding-Mode Control to the Design of a Buck-Based Sinusoidal Generator
,”
IEEE Trans. Ind. Electron.
,
48
(
3
), pp.
563
571
.
3.
Ajallooeian
,
M.
,
Nili-Ahmadabadi
,
M.
,
Araabi
,
B. N.
, and
Moradi
,
H.
,
2012
, “
Design, Implementation and Analysis of an Alternation-Based Central Pattern Generator for Multidimensional Trajectory Generation
,”
Rob. Auton. Syst.
,
60
(
2
), pp.
182
198
.
4.
Solomon
,
J. H.
,
Wisse
,
M.
, and
Hartmann
,
M. J.
,
2010
, “
Fully Interconnected, Linear Control for Limit Cycle Walking
,”
Adapt. Behav.
,
18
(
6
), pp.
492
506
.
5.
Hakimi
,
A.
, and
Binazadeh
,
T.
,
2015
, “
Application of Circular Limit Cycles for Generation of Uniform Flight Paths to Surveillance of a Region by UAV
,”
Open Sci. J. Electr. Electron. Eng.
,
2
(
3
), pp.
36
42
.
6.
Knütter
,
R.
, and
Wagner
,
H.
,
2011
, “
Optimal Monetary Policy During Boom-Bust Cycles: The Impact of Globalization
,”
Int. J. Econ. Finance
,
3
(
2
), p.
34
.
7.
Schuster
,
P.
,
Sigmund
,
K.
, and
Wolff
,
R.
,
1978
, “
Dynamical Systems Under Constant Organization—I: Topological Analysis of a Family of Non-Linear Differential Equations—A Model for Catalytic Hypercycles
,”
Bull. Math. Biol.
,
40
(
6
), pp.
743
769
.5
8.
Binazadeh
,
T.
,
2016
, “
Finite-Time Tracker Design for Uncertain Nonlinear Fractional-Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041028
.
9.
Binazadeh
,
T.
, and
Bahmani
,
M.
,
2016
, “
Robust Time-Varying Output Tracking Control in the Presence of Actuator Saturation
,”
Trans. Inst. Meas. Control
, epub.
10.
Haddad
,
W. M.
, and
Chellaboina
,
V.
,
2008
,
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach
,
Princeton University Press
,
Princeton, NJ
.
11.
Aracil
,
J.
,
Gordillo
,
F.
, and
Ponce
,
E.
,
2005
, “
Stabilization of Oscillations Through Backstepping in High-Dimensional Systems
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
705
710
.
12.
Hakimi
,
A. R.
, and
Binazadeh
,
T.
,
2016
, “
Inducing Sustained Oscillations in a Class of Nonlinear Discrete Time Systems
,”
J. Vib. Control
, epub.
13.
Aguilar-Ibánez
,
C.
,
Martinez
,
J. C.
,
de Jesus Rubio
,
J.
, and
Suarez-Castanon
,
M. S.
,
2015
, “
Inducing Sustained Oscillations in Feedback-Linearizable Single-Input Nonlinear Systems
,”
ISA Trans.
,
54
, pp.
117
124
.
14.
Hakimi
,
A. R.
, and
Binazadeh
,
T.
,
2015
, “
Stable Limit Cycles Generating in a Class of Uncertain Nonlinear Systems: Application in Inertia Pendulum
,”
Modares J. Electr. Eng.
,
12
(
3
), pp.
1
6
.
15.
Tusset
,
A. M.
,
Piccirillo
,
V.
,
Bueno
,
A. M.
,
Balthazar
,
J. M.
,
Sado
,
D.
,
Felix
,
J. L. P.
, and
Brasil
,
R. M. L. R. d. F.
,
2016
, “
Chaos Control and Sensitivity Analysis of a Double Pendulum Arm Excited by an RLC Circuit Based Nonlinear Shaker
,”
J. Vib. Control
,
22
(
17
), pp.
3621
3637
.
16.
Binazadeh
,
T.
, and
Bahmani
,
M.
,
2016
, “
Design of Robust Controller for a Class of Uncertain Discrete-Time Systems Subject to Actuator Saturation
,”
IEEE Trans. Autom. Control
,
PP
(
99
), p.
1
.
17.
Binazadeh
,
T.
,
Shafiei
,
M. H.
, and
Rahgoshay
,
M. A.
,
2015
, “
Robust Stabilization of a Class of Nonaffine Quadratic Polynomial Systems: Application in Magnetic Ball Levitation System
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
014501
.
18.
Tarō
,
Y.
,
1966
,
Stability Theory by Liapunov's⌢ Second Method
, Vol.
9
,
Mathematical Society of Japan
,
Tokyo, Japan
.
19.
Khalil
,
H. K.
,
2014
,
Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
20.
Pagano
,
D. J.
,
Aracil
,
J.
, and
Gordillo
,
F.
,
2005
, “
Autonomous Oscillation Generation in the Boost Converter
,”
16th IFAC World Congress
,
38
(
1
), pp.
430
435
.
21.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2015
, “
Suboptimal Stabilizing Controller Design for Nonlinear Slowly-Varying Systems: Application in a Benchmark System
,”
IMA J. Math. Control Inf.
,
32
(
3
), pp.
471
483
.
22.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2014
, “
Robust Stabilization of Uncertain Nonlinear Slowly-Varying Systems: Application in a Time-Varying Inertia Pendulum
,”
ISA Trans.
,
53
(
2
), pp.
373
379
.
23.
Peruzzi
,
N. J.
,
Chavarette
,
F. R.
,
Balthazar
,
J. M.
,
Tusset
,
A. M.
,
Perticarrari
,
A. L. P. M.
, and
Brasil
,
R. M. F. L.
,
2015
, “
The Dynamic Behavior of a Parametrically Excited Time-Periodic MEMS Taking Into Account Parametric Errors
,”
J. Vib. Control
,
22
(
20
), pp.
4101
4110
.
24.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
2008
,
Robot Dynamics and Control
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.