A model for forward dynamic simulation of the rapid tapping motion of an index finger is presented. The finger model was actuated by two muscle groups: one flexor and one extensor. The goal of this analysis was to estimate the maximum tapping frequency that the index finger can achieve using forward dynamics simulations. To achieve this goal, each muscle excitation signal was parameterized by a seventh-order Fourier series as a function of time. Simulations found that the maximum tapping frequency was 6 Hz, which is reasonably close to the experimental data. Amplitude attenuation (37% at 6 Hz) due to excitation/activation filtering, as well as the inability of muscles to produce enough force at high contractile velocities, are factors that prevent the finger from moving at higher frequencies. Musculoskeletal models have the potential to shed light on these restricting mechanisms and help to better understand human capabilities in motion production.

References

1.
Wu
,
J. Z.
,
An
,
K.-N.
,
Cutlip
,
R. G.
,
Krajnak
,
K.
,
Welcome
,
D.
, and
Dong
,
R. G.
,
2008
, “
Analysis of Musculoskeletal Loading in an Index Finger During Tapping
,”
J. Biomech.
,
41
(
3
), pp.
668
676
.
2.
Brook
,
N.
,
Mizrahi
,
J.
,
Shoham
,
M.
, and
Dayan
,
J.
,
1995
, “
A Biomechanical Model of Index Finger Dynamics
,”
Med. Eng. Phys.
,
17
(
1
), pp.
54
63
.
3.
Kirk
,
D. E.
,
2004
,
Optimal Control Theory: An Introduction
,
Dover Publications
,
Mineola, New York
.
4.
Betts
,
J.
,
2001
,
Practical Methods for Optimal Control Using Nonlinear Programming
,
SIAM
,
Philadelphia, PA
.
5.
Chachuat
,
B. C.
,
2007
,
Nonlinear and Dynamic Optimization: From Theory to Practice
,
Automatic Control Laboratory, EPFL
,
Lausanne, Switzerland
.
6.
Sharif Razavian
,
R.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2015
, “
A Model-Based Approach to Predict Muscle Synergies Using Optimization: Application to Feedback Control
,”
Front. Comput. Neurosci.
,
9
, pp.
1
13
.
7.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.
8.
de Groote
,
F.
,
Kinney
,
A. L.
,
Rao
,
A. V.
, and
Fregly
,
B. J.
,
2016
, “
Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2922
2936
.
9.
Meyer
,
A.
,
Eskinazi
,
I.
,
Jackson
,
J.
,
Rao
,
A.
,
Patten
,
C.
, and
Fregly
,
B.
,
2016
, “
Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions
,”
Front. Bioeng. Biotechnol
,
4
, p. 77.
10.
Todorov
,
E.
, and
Jordan
,
M. I.
,
2002
, “
Optimal Feedback Control as a Theory of Motor Coordination
,”
Nat. Neurosci.
,
5
(
11
), pp.
1226
1235
.
11.
Todorov
,
E.
,
2004
, “
Optimality Principles in Sensorimotor Control
,”
Nat. Neurosci.
,
7
(
9
), pp.
907
915
.
12.
Li
,
W.
, and
Todorov
,
E.
,
2004
, “
Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems
,”
1st International Conference on Informatics in Control, Automation and Robotics
(
ICINCO
), Setúbal, Portugal, Aug. 25–28, pp.
1
8
.
13.
Liu
,
D.
, and
Todorov
,
E.
,
2009
, “
Hierarchical Optimal Control of a 7-DOF Arm Model
,”
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning
(
ADPRL
), Nashville, TN, Mar. 30–Apr. 2, pp.
50
57
.
14.
Rao
,
A. V.
,
2009
, “
A Survey of Numerical Methods for Optimal Control
,”
Adv. Astronaut. Sci.
,
135
(
1
), pp.
497
528
.
15.
Ackermann
,
M.
,
2007
, “
Dynamics and Energetics of Walking With Prostheses
,”
Ph.D. thesis
, University of Stuttgart, Stuttgart, Germany.
16.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
17.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2014
, “
Optimal Control and Forward Dynamics of Human Periodic Motions Using Fourier Series for Muscle Excitation Patterns
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021005
.
18.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.
19.
Shourijeh
,
M. S.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2017
, “
Forward Static Optimization in Dynamic Simulation of Human Musculoskeletal Systems: A Proof-of-Concept Study
,”
ASME J. Comput. Nonlinear Dyn.
, epub.
20.
Shourijeh
,
M. S.
,
Smale
,
K. B.
,
Potvin
,
B. M.
, and
Benoit
,
D. L.
,
2016
, “
A Forward-Muscular Inverse-Skeletal Dynamics Framework for Human Musculoskeletal Simulations
,”
J. Biomech.
,
49
(
9
), pp.
1718
1723
.
21.
Mehrabi
,
N.
,
Sharif Razavian
,
R.
, and
McPhee
,
J.
,
2015
, “
Steering Disturbance Rejection Using a Physics-Based Neuromusculoskeletal Driver Model
,”
Veh. Syst. Dyn.
,
53
(
10
), pp.
1393
1415
.
22.
Mehrabi
,
N.
,
Sharif Razavian
,
R.
, and
McPhee
,
J.
,
2015
, “
A Physics-Based Musculoskeletal Driver Model to Study Steering Tasks
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021012
.
23.
Mehrabi
,
N.
,
Sharif Razavian
,
R.
, and
McPhee
,
J.
,
2013
, “
A Three-Dimensional Musculoskeletal Driver Model to Study Steering Tasks
,”
ASME
Paper No. DETC2013-13101.
24.
Garcia-Vallejo
,
D.
, and
Schiehlen
,
W.
,
2012
, “
3D-Simulation of Human Walking by Parameter Optimization
,”
Arch. Appl. Mech.
,
82
(
4
), pp.
533
556
.
25.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2014
, “
Forward Dynamic Optimization of Human Gait Simulations: A Global Parameterization Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031018
.
26.
Sharif Razavian
,
R.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2015
, “
A Neuronal Model of Central Pattern Generator to Account for Natural Motion Variation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021007
.
27.
Sharif Razavian
,
R.
, and
McPhee
,
J.
,
2015
, “
Minimization of Muscle Fatigue as the Criterion to Solve Muscle Forces-Sharing Problem
,”
ASME
Paper No. DSCC2015-9678.
28.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
29.
Keir
,
P. J.
,
1995
, “
Functional Implications of the Musculoskeletal Anatomy and Passive Tissue Properties of the Forearm
,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada.
30.
Maganaris
,
C. N.
,
Baltzopoulos
,
V.
,
Ball
,
D.
, and
Sargeant
,
A. J.
,
2001
, “
In Vivo Specific Tension of Human Skeletal Muscle
,”
J. Appl. Physiol.
,
90
(
3
), pp.
865
872
.
31.
Powell
,
P. L.
,
Roy
,
R. R.
,
Kanim
,
P.
,
Bello
,
M. A.
, and
Edgerton
,
V. R.
,
1984
, “
Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs
,”
J. Appl. Physiol.
,
57
(
6
), pp.
1715
1721
.
32.
Bárány
,
M.
, and
Close
,
R. I.
,
1971
, “
The Transformation of Myosin in Cross-Innervated Rat Muscles
,”
J. Physiol.
,
213
(
2
), pp.
455
474
.
33.
Kawakami
,
Y.
,
Nakazawa
,
K.
,
Fujimoto
,
T.
,
Nozaki
,
D.
,
Miyashita
,
M.
, and
Fukunaga
,
T.
,
1994
, “
Specific Tension of Elbow Flexor and Extensor Muscles Based on Magnetic Resonance Imaging
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
68
(
2
), pp.
139
47
.
34.
An
,
K. N.
,
Kaufman
,
K. R.
, and
Chao
,
E. Y. S.
,
1989
, “
Physiological Considerations of Muscle Force Through the Elbow Joint
,”
J. Biomech.
,
22
(
11–12
), pp.
1249
1256
.
35.
Buchner
,
H. M.
, and
Hemami
,
H.
,
1988
, “
A Dynamic Model for Finger Interphalangeal Coordination
,”
J. Biomech.
,
21
(
6
), pp.
459
468
.
36.
Unsworth
,
A.
, and
Alexander
,
W. J.
,
1979
, “
Dimensions of the Metacarpophalangeal Joint With Particular Reference to Joint Prostheses
,”
Eng. Med.
,
8
(
2
), pp.
75
80
.
37.
Kuo
,
P. L.
,
Lee
,
D. L.
,
Jindrich
,
D. L.
, and
Dennerlein
,
J. T.
,
2006
, “
Finger Joint Coordination During Tapping
,”
J. Biomech.
,
39
(
16
), pp.
2934
2942
.
38.
Happee
,
R.
,
1994
, “
Inverse Dynamic Optimization Including Muscular Dynamics, a New Simulation Method Applied to Goal Directed Movements
,”
J. Biomech.
,
27
(
7
), pp.
953
960
.
39.
Shourijeh
,
M. S.
,
2013
, “
Optimal Control and Multibody Dynamic Modelling of Human Musculoskeletal Systems
,”
Ph.D. thesis
, University of Waterloo, Waterloo, ON, Canada.
40.
Kerwin
,
J.
, and
Challis
,
D.
,
1993
, “
An Analytical Examination of Muscle Force Estimations Using Optimization Techniques
,”
J. Eng. Med.
,
207
(3), pp.
139
148
.
41.
Kuboyama
,
N.
,
Nabetani
,
N.
,
Shibuya
,
K.
,
Machida
,
K.
, and
Ogaki
,
T.
,
2004
, “
The Effect of Maximal Finger Tapping on Cerebral Activation
,”
J. Physiol. Anthropol. Appl. Hum. Sci.
,
23
(
4
), pp.
105
110
.
42.
Kuboyama
,
N.
,
Nabetani
,
T.
,
Shibuya
,
K.
,
Machida
,
K.
, and
Ogaki
,
T.
,
2005
, “
Relationship Between Cerebral Activity and Movement Frequency of Maximal Finger Tapping
,”
J. Physiol. Anthropol. Appl. Hum. Sci.
,
24
(
3
), pp.
201
208
.
43.
Aoki
,
T.
, and
Fukuoka
,
Y.
,
2010
, “
Finger Tapping Ability in Healthy Elderly and Young Adults
,”
Med. Sci. Sports Exercise
,
42
(
3
), pp.
449
455
.
44.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
1991
, “
Feedback Gains for Correcting Small Perturbations to Standing Posture
,”
IEEE Trans. Auton. Control
,
36
(
3
), pp.
322
332
.
45.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2013
, “
Efficient Hyper-Volumetric Contact Dynamic Modelling of the Foot Within Human Gait Simulations
,”
ASME
Paper No. DETC2013-13446.
46.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2015
, “
Foot–Ground Contact Modeling Within Human Gait Simulations: From Kelvin–Voigt to Hyper-Volumetric Models
,”
Multibody Syst. Dyn.
,
35
(
4
), pp.
393
407
.
You do not currently have access to this content.