Musculoskeletal simulations can be used to determine loads experienced by the ligaments and cartilage during athletic motions such as impact from a drop landing, hence investigating mechanisms for injury. An open-source discrete element knee model was used to perform a forward dynamic simulation of the impact phase of a drop landing. The analysis was performed for varying moduli: nominal stiffness based on the literature, stiffness increased by 10%, and decreased by 10%. As the cartilage stiffness increased, the medial compartment contact load decreased. Conversely, the lateral compartment load and medial collateral ligament (MCL) force increased, causing a shift in the load distribution. However, these changes were insignificant compared to the overall magnitude of the contact forces (<4% change). The anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), and lateral collateral ligament (LCL) loads remain unchanged between varying cartilage stiffness values. The medial compartment bears a majority of the load (860 N in the medial compartment versus 540 N in the lateral) during the impact phase of a drop landing, which agrees with physiological data that the medial side of the knee is more affected by osteoarthritis (OA) than the lateral side. The model was then simplified using a linear Kelvin–Voight model for the cartilage and linear pretensioned springs representing the cumulative ligament bundles. This allowed for a validation of the system and the extrapolation of the results as the mass and cartilage stiffness varied. This is one of the few studies to quantify this load distribution and shows that the results are invariant to changes in cartilage stiffness. This effect is due to the precompression system created by the coordinated action of cartilage and ligaments.

References

1.
Gage
,
B. E.
,
McIlvain
,
N. M.
,
Collins
,
C. L.
,
Fields
,
S. K.
, and
Dawn Comstock
,
R.
,
2012
, “
Epidemiology of 6.6 Million Knee Injuries Presenting to United States Emergency Departments From 1999 Through 2008
,”
Acad. Emerg. Med.
,
19
(
4
), pp.
378
385
.
2.
Boden
,
B. P.
,
Dean
,
G. S.
,
Feagin
,
J. A.
, and
Garrett
,
W. E.
,
2000
, “
Mechanisms of Anterior Cruciate Ligament Injury
,”
Orthopedics
,
23
(
6
), pp.
573
578
.
3.
Alentorn-Geli
,
E.
,
Myer
,
G. D.
,
Silvers
,
H. J.
,
Samitier
,
G.
,
Romero
,
D.
,
Lázaro-Haro
,
C.
, and
Cugat
,
R.
,
2009
, “
Prevention of Non-Contact Anterior Cruciate Ligament Injuries in Soccer Players. Part 2: A Review of Prevention Programs Aimed to Modify Risk Factors and to Reduce Injury Rates
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
17
(
8
), pp.
859
879
.
4.
Brophy
,
R. H.
,
Silvers
,
H. J.
, and
Mandelbaum
,
B. R.
,
2010
, “
Anterior Cruciate Ligament Injuries: Etiology and Prevention
,”
Sports Med. Arthrosc. Rev.
,
18
(
1
), pp.
2
11
.https://www.ncbi.nlm.nih.gov/pubmed/20160623
5.
Meireles
,
S.
,
De Groote
,
F.
,
Reeves
,
N.
,
Verschueren
,
S.
,
Maganaris
,
C.
,
Luyten
,
F.
, and
Jonkers
,
I.
,
2016
, “
Knee Contact Forces are Not Altered in Early Knee Osteoarthritis
,”
Gait Posture
,
45
, pp.
115
120
.
6.
Nagura
,
T.
,
Matsumoto
,
H.
,
Kiriyama
,
Y.
,
Chaudhari
,
A.
, and
Andriacchi
,
T. P.
,
2006
, “
Tibiofemoral Joint Contact Force in Deep Knee Flexion and Its Consideration in Knee Osteoarthritis and Joint Replacement
,”
J. Appl. Biomech.
,
22
(
4
), pp.
305
313
.
7.
Wellsandt
,
E.
,
Gardinier
,
E. S.
,
Manal
,
K.
,
Axe
,
M. J.
,
Buchanan
,
T. S.
, and
Snyder-Mackler
,
L.
,
2016
, “
Decreased Knee Joint Loading Associated With Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury
,”
AJSM
,
44
(
1
), pp.
143
151
.
8.
Schmitz
,
A.
, and
Piovesan
,
D.
,
2016
, “
Development of an Open-Source, Discrete Element Knee Model
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2056
2067
.
9.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2011
, “
Simbody: Multibody Dynamics for Biomedical Research
,”
Proc. Iutam
,
2
, pp.
241
261
.
10.
Shepherd
,
D. E.
, and
Seedhom
,
B. B.
,
1999
, “
The ‘Instantaneous' Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb
,”
Rheumatology (Oxford)
,
38
(
2
), pp.
124
132
.
11.
Shepherd
,
D.
, and
Seedhom
,
B.
,
1999
, “
Thickness of Human Articular Cartilage in Joints of the Lower Limb
,”
Ann Rheum Dis
,
58
(
1
), pp.
27
34
.
12.
Blankevoort
,
L.
,
Kuiper
,
J.
,
Huiskes
,
R.
, and
Grootenboer
,
H.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.
13.
Schmitz
,
A.
,
Pohl
,
M. B.
,
Woods
,
K.
, and
Noehren
,
B.
,
2014
, “
Variables During Swing Associated With Decreased Impact Peak and Loading Rate in Running
,”
J. Biomech.
,
47
(
1
), pp.
32
38
.
14.
Sibole
,
S.
,
Bennetts
,
C.
,
Borotikar
,
B.
,
Maas
,
S.
,
van den Bogert
,
A. J.
,
Weiss
,
J. A.
, and
Erdemir
,
A.
,
2010
, “Open Knee: A 3D Finite Element Representation of the Knee Joint,”
34th Annual Meeting of the American Society of Biomechanics
, Rhode Island, England, Aug. 18–21.https://simtk.org/svn/openknee/_gen1/doc/asb2010.pdf
15.
Garg
,
A.
, and
Walker
,
P.
,
1990
, “
Prediction of Total Knee Motion Using a Three-Dimensional Computer-Graphics Model
,”
J. Biomech.
,
23
(
1
), pp.
45
53
.
16.
OpenSim
,
2013
,
Trouble With Contact
,
Public Forum
,
OpenSim
.
17.
Erdemir
,
A.
,
Guess
,
T. M.
,
Halloran
,
J. P.
,
Modenese
,
L.
,
Reinbolt
,
J. A.
,
Thelen
,
D. G.
, and
Umberger
,
B. R.
,
2016
, “
Commentary on the Integration of Model Sharing and Reproducibility Analysis to Scholarly Publishing Workflow in Computational Biomechanics
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2080
2085
.
18.
Seegmiller
,
J. G.
, and
McCaw
,
S. T.
,
2003
, “
Ground Reaction Forces Among Gymnasts and Recreational Athletes in Drop Landings
,”
J. Athletic Train.
,
38
(
4
), pp.
311
314
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314389/
19.
Winkler
,
E.
,
1867
, “
Theory of Elasticity and Strength
,” Dominicus Prague, Czechoslovakia.
20.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
21.
Baptista
,
J.
,
2011
, “
Human-Orthotic Integrated Biomechanical Model for Comfort Analysis Evaluation
,”
Masters thesis
, Instituto Superior Tecnico, Lisboa, Portugal.https://fenix.tecnico.ulisboa.pt/downloadFile/395143449009/Final.pdf
22.
Garcia-Romeu-Martinez
,
M. A.
,
Sek
,
M. A.
, and
Cloquell-Ballester
,
V. A.
,
2009
, “
Effect of Initial Pre-Compression of Corrugated Paperboard Cushions on Shock Attenuation Characteristics in Repetitive Impacts
,”
Packag. Technol. Sci.
,
22
(
6
), pp.
323
334
.
23.
Minak
,
G.
,
Fotouhi
,
M.
, and
Ahmadi
,
M.
,
2016
,
6–Low-Velocity Impact on Laminates A2—Silberschmidt
,
V.
Vadim
, ed., Woodhead, Sawston, Cambridge.
24.
Hosoda
,
N.
,
Sakai
,
N.
,
Sawae
,
Y.
, and
Murakami
,
T.
,
2009
, “
Finite Element Analysis of Articular Cartilage Model Considering the Configuration and Biphasic Property of the Tissue
,”
13th International Conference on Biomedical Engineering
(
ICBME
), Singapore, Dec. 3–6, pp.
1883
1887
.
25.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051008
.
26.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.
27.
Guo
,
T.
,
Su
,
J.
, and
Li
,
G.
,
2010
, “
Numerical Simulation of Tibia-Femoral Joint Contact Mechanical Character
,”
6th World Congress of Biomechanics
(
WCB 2010
), Singapore, Aug. 1–6, pp. 919–922.
You do not currently have access to this content.