Impact oscillators exhibit an abrupt onset of chaos close to grazing due to the square-root singularity in their discrete time maps. In practical applications, this large-amplitude chaotic vibration needs to be avoided. It has been shown that this can be achieved if the ratio of the natural frequency of the oscillator ω0 and the forcing frequency is an even integer. But, in practice, it is difficult to set a parameter at such a precise value. We show that in systems with square-root singularity (prestressed impacting surface), there exists a range of ω0 around the theoretical value over which the chaotic orbit does not occur, and that this is due to an interplay between the main attractor and coexisting orbits. We show that this range of forcing frequency has exponential dependence on the amount of prestress as well as on the stiffness ratio of the springs.

References

1.
Nordmark
,
A. B.
,
1991
, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
(
2
), pp.
279
297
.
2.
Nordmark
,
A. B.
,
1997
, “
Universal Limit Mapping in Grazing Bifurcations
,”
Phys. Rev. E
,
55
(
1
), pp.
266
270
.
3.
Chin
,
W.
,
Ott
,
E.
,
Nusse
,
H. E.
, and
Grebogi
,
C.
,
1994
, “
Grazing Bifurcations in Impact Oscillators
,”
Phys. Rev. E
,
50
(
6
), pp.
4427
4444
.
4.
Ma
,
Y.
,
Agarwal
,
M.
, and
Banerjee
,
S.
,
2006
, “
Border Collision Bifurcations in a Soft Impact System
,”
Phys. Lett. A
,
354
(
4
), pp.
281
287
.
5.
Molenaar
,
J.
,
de Weger
,
J. G.
, and
van de Water
,
W.
,
2001
, “
Mappings of Grazing-Impact Oscillators
,”
Nonlinearity
,
14
(
1
), pp.
301
321
.
6.
de Weger
,
J.
,
van de Water
,
W.
, and
Molenaar
,
J.
,
2000
, “
Grazing Impact Oscillations
,”
Phys. Rev. E
,
62
(
2
), pp.
2030
2041
.
7.
Ma
,
Y.
,
Ing
,
J.
,
Banerjee
,
S.
,
Wiercigroch
,
M.
, and
Pavlovskaia
,
E.
,
2008
, “
The Nature of the Normal Form Map for Soft Impacting Systems
,”
Int. J. Nonlinear Mech.
,
43
(
4
), pp.
504
513
.
8.
Budd
,
C.
,
2013
, “
Grazing in Impact Oscillators
,”
Real and Complex Dynamical Systems
, Vol. 464,
B.
Branner
and
P.
Hjorth
, eds.,
Springer Science & Business Media, Dordrecht, The Netherlands
, pp.
47
64
.
9.
Budd
,
C.
, and
Dux
,
F.
,
1994
, “
Chattering and Related Behaviour in Impacting Oscillators
,”
Philos. Trans. R. Soc.
,
347
(
1683
), pp.
365
389
.
10.
Kundu
,
S.
,
Banerjee
,
S.
, and
Giaouris
,
D.
,
2011
, “
Vanishing Singularity in Hard Impacting Systems
,”
Discrete Contin. Dyn. Syst., Ser. B
,
16
(
1
), pp.
319
332
.
11.
Kundu
,
S.
,
Banerjee
,
S.
,
Ing
,
J.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2012
, “
Singularities in Soft-Impacting Systems
,”
Physica D
,
241
(
5
), pp.
553
565
.
12.
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Grebogi
,
C.
,
2004
, “
Two-Dimensional Map for Impact Oscillator With Drift
,”
Phys. Rev. E
,
70
(
3
), p.
036201
.
13.
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2004
, “
Analytical Drift Reconstruction for Visco-Elastic Impact Oscillators Operating in Periodic and Chaotic Regimes
,”
Chaos, Solitons Fractals
,
19
(
1
), pp.
151
161
.
14.
Blazejczyk-Okolewska
,
B.
, and
Kapitaniak
,
T.
,
1998
, “
Co-Existing Attractors of Impact Oscillator
,”
Chaos, Solitons Fractals
,
9
(
8
), pp.
1439
1443
.
15.
Ing
,
J.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2006
, “
Dynamics of a Nearly Symmetrical Piecewise Oscillator Close to Grazing Incidence: Modelling and Experimental Verification
,”
Nonlinear Dyn.
,
46
(
3
), pp.
225
238
.
16.
Ing
,
J.
,
Pavlovskaia
,
E. E.
,
Wiercigroch
,
M.
, and
Banerjee
,
S.
,
2008
, “
Experimental Study of Impact Oscillator With One Sided Elastic Constraint
,”
Philos. Trans. R. Soc.
,
366
(
1866
), pp.
679
704
.
17.
Hassouneh
,
M. A.
,
Abed
,
E. H.
, and
Nusse
,
H. E.
,
2004
, “
Robust Dangerous Border-Collision Bifurcations in Piecewise Smooth Systems
,”
Phys. Rev. Lett.
,
92
(
7
), p.
070201
.
18.
Ganguli
,
A.
, and
Banerjee
,
S.
,
2005
, “
Dangerous Bifurcation at Border Collision: When Does it Occur?
,”
Phys. Rev. E
,
71
(
5
), p.
057202
.
19.
Banerjee
,
S.
,
Ing
,
J.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Reddy
,
R. K.
,
2009
, “
Invisible Grazings and Dangerous Bifurcations in Impacting Systems: The Problem of Narrow-Band Chaos
,”
Phys. Rev. E
,
79
(
3
), p.
037201
.
20.
Suda
,
N.
, and
Banerjee
,
S.
,
2016
, “
Why Does Narrow Band Chaos in Impact Oscillators Disappear Over a Range of Frequencies?
,”
Nonlinear Dyn.
,
86
(
3
), pp.
2017
2022
.
21.
Mandal
,
K.
,
Chakraborty
,
C.
,
Abusorrah
,
A.
,
Al-Hindawi
,
M.
,
Al-Turki
,
Y.
, and
Banerjee
,
S.
,
2013
, “
An Automated Algorithm for Stability Analysis of Hybrid Dynamical Systems
,”
Eur. Phys. J. Spec. Top.
,
222
(
3–4
), pp.
757
768
.
You do not currently have access to this content.