In this paper, we perform a path-following bifurcation analysis of church bell to gain an insight into the governing dynamics of the yoke–bell–clapper system. We use an experimentally validated hybrid dynamical model based on the detailed measurements of a real church bell. Numerical analysis is performed both by a direct numerical integration and a path-following methods using a new numerical toolbox ABESPOL (Chong, 2016, “Numerical Modeling and Stability Analysis of Non-Smooth Dynamical Systems Via ABESPOL,” Ph.D. thesis, University of Aberdeen, Aberdeen, UK) based on COCO (Dankowicz and Schilder, Recipes for Continuation (Computational Science and Engineering), Society for Industrial and Applied Mathematics, Philadelphia, PA). We constructed one-parameter diagrams that allow to characterize the most common dynamical states and to investigate the mechanisms of their dynamic stability. A novel method allowing to locate the regions in the parameters' space ensuring robustness of bells' effective performance is presented.

References

1.
Veltmann
,
W.
,
1876
, “
Uerber die bewgugn einer glocke
,”
Dinglers Polytech. J.
,
220
, pp.
481
494
.http://dingler.culture.hu-berlin.de/article/pj220/ar220120
2.
Veltmann
,
W.
,
1880
,
Die koelner kaiserglocke. Enthullungen uber die art und weise wie der koelner dom zu einer misrathenen glocke gekommen ist
,
Hauptmann
,
Bonn, Germany
.
3.
Threlfall
,
B. D.
, and
Heyman
,
J.
,
1976
, “
Inertia Forces Due to Bell-Ringing
,”
Int. J. Mech. Sci.
,
18
(4), pp.
161
164
.
4.
Foti
,
D.
,
Lepidi
,
M.
, and
Gattulli
,
V.
,
2009
, “
Swinging-Bell Resonances and Their Cancellation Identified by Dynamical Testing in a Modern Bell Tower
,”
Eng. Struct.
,
31
(
7
), pp.
1486
1500
.
5.
Adam
,
J. M.
,
Ivorra
,
S.
, and
Pallares
,
F. J.
,
2009
, “
Dynamic Behaviour of a Modern Bell Tower—A Case Study
,”
Eng. Struct.
,
31
(
5
), pp.
1085
1092
.
6.
Brzeski
,
P.
,
Perlikowski
,
P.
, and
Kapitaniak
,
T.
,
2015
, “
Experimental Verification of a Hybrid Dynamical Model of the Church Bell
,”
Int. J. Impact Eng.
,
80
, pp.
177
184
.
7.
Wiercigroch
,
M.
,
Ing
,
J.
, and
Pavlovskaia
,
E.
,
2006
, “
Dynamics of a Nearly Symmetrical Piecewise Linear Oscillator Close to Grazing Incidence: Modelling and Experimental Verification
,”
Nonlinear Dyn.
,
46
(
3
), pp.
225
238
.
8.
Bishop
,
S. R.
, and
Foale
,
S.
,
1994
, “
Bifurcations in Impact Oscillations
,”
Nonlinear Dyn.
,
6
(
3
), pp.
285
299
.
9.
Nusse
,
H.
,
Chin
,
W.
,
Ott
,
E.
, and
Grebogi
,
C.
,
1994
, “
Grazing Bifurcations in Impact Oscillators
,”
Phys. Rev. E
,
50
(
6
), pp.
4427
4444
.
10.
Whiston
,
G. S.
,
1987
, “
Global Dynamics of a Vibro-Impacting Linear Oscillator
,”
J. Sound Vib.
,
118
(
3
), pp.
395
424
.
11.
Nordmark
,
A. B.
, and
Fredriksson
,
M. H.
,
1997
, “
Bifurcations Caused by Grazing Incidence in Many Degrees of Freedom Impact Oscillators
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
453
, pp.
1261
1276
.
12.
Nordmark
,
A. B.
,
2001
, “
Existence of Periodic Orbits in Grazing Bifurcations of Impacting Mechanical Oscillators
,”
Nonlinearity
,
14
(
6
), pp.
1517
1542
.
13.
Wagg
,
D. J.
, and
Bishop
,
S. R.
,
2001
, “
Chatter, Sticking and Chaotic Impacting Motion in a Two-Degree of Freedom Impact Oscillator
,”
Int. J. Bifurcation Chaos
,
11
(
1
), pp.
57
71
.
14.
Brzeski
,
P.
,
Perlikowski
,
P.
, and
Kapitaniak
,
T.
,
2015
, “
Analysis of Transitions Between Different Ringing Schemes of the Church Bell
,”
Int. J. Impact Eng.
,
85
, pp.
57
66
.
15.
Chong
,
A. S. E.
,
2016
, “
Numerical Modelling and Stability Analysis of Non-Smooth Dynamical Systems Via ABESPOL
,”
Ph.D. thesis
, University of Aberdeen, Aberdeen, UK.http://www.abdn.ac.uk/news/10098/
16.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
(Computational Science and Engineering),
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
You do not currently have access to this content.