In this paper, we perform a path-following bifurcation analysis of church bell to gain an insight into the governing dynamics of the yoke–bell–clapper system. We use an experimentally validated hybrid dynamical model based on the detailed measurements of a real church bell. Numerical analysis is performed both by a direct numerical integration and a path-following methods using a new numerical toolbox ABESPOL (Chong, 2016, “Numerical Modeling and Stability Analysis of Non-Smooth Dynamical Systems Via ABESPOL,” Ph.D. thesis, University of Aberdeen, Aberdeen, UK) based on COCO (Dankowicz and Schilder, Recipes for Continuation (Computational Science and Engineering), Society for Industrial and Applied Mathematics, Philadelphia, PA). We constructed one-parameter diagrams that allow to characterize the most common dynamical states and to investigate the mechanisms of their dynamic stability. A novel method allowing to locate the regions in the parameters' space ensuring robustness of bells' effective performance is presented.
Skip Nav Destination
Article navigation
November 2017
Research-Article
Path-Following Bifurcation Analysis of Church Bell Dynamics
Antonio Simon Chong Escobar,
Antonio Simon Chong Escobar
Centre for Applied Dynamics Research,
University of Aberdeen,
Kings College,
Aberdeen AB24 3UE, UK;
University of Aberdeen,
Kings College,
Aberdeen AB24 3UE, UK;
Facultad de Ciencias Naturales y Matemáticas,
Escuela Superior Politécnica del Litoral,
Km. 30.5 Vía Perimetral,
Guayaquil 09-01-5863, Ecuador
e-mail: a.chong@abdn.ac.uk
Escuela Superior Politécnica del Litoral,
Km. 30.5 Vía Perimetral,
Guayaquil 09-01-5863, Ecuador
e-mail: a.chong@abdn.ac.uk
Search for other works by this author on:
Piotr Brzeski,
Piotr Brzeski
Division of Dynamics,
Lodz University of Technology,
Stefanowskiego 1/15, Lodz 90-924, Poland;
Lodz University of Technology,
Stefanowskiego 1/15, Lodz 90-924, Poland;
Potsdam Institute for Climate
Impact Research (PIK),
Potsdam 14473, Germany;
Impact Research (PIK),
Potsdam 14473, Germany;
Search for other works by this author on:
Marian Wiercigroch,
Marian Wiercigroch
Centre for Applied Dynamics Research,
University of Aberdeen,
Kings College,
Aberdeen AB24 3UE, UK
e-mail: m.wiercigroch@abdn.ac.uk
University of Aberdeen,
Kings College,
Aberdeen AB24 3UE, UK
e-mail: m.wiercigroch@abdn.ac.uk
Search for other works by this author on:
Przemyslaw Perlikowski
Przemyslaw Perlikowski
Division of Dynamics,
Lodz University of Technology,
Stefanowskiego 1/15,
Lodz 90-924, Poland
e-mail: przemyslaw.perlikowski@p.lodz.pl
Lodz University of Technology,
Stefanowskiego 1/15,
Lodz 90-924, Poland
e-mail: przemyslaw.perlikowski@p.lodz.pl
Search for other works by this author on:
Antonio Simon Chong Escobar
Centre for Applied Dynamics Research,
University of Aberdeen,
Kings College,
Aberdeen AB24 3UE, UK;
University of Aberdeen,
Kings College,
Aberdeen AB24 3UE, UK;
Facultad de Ciencias Naturales y Matemáticas,
Escuela Superior Politécnica del Litoral,
Km. 30.5 Vía Perimetral,
Guayaquil 09-01-5863, Ecuador
e-mail: a.chong@abdn.ac.uk
Escuela Superior Politécnica del Litoral,
Km. 30.5 Vía Perimetral,
Guayaquil 09-01-5863, Ecuador
e-mail: a.chong@abdn.ac.uk
Piotr Brzeski
Division of Dynamics,
Lodz University of Technology,
Stefanowskiego 1/15, Lodz 90-924, Poland;
Lodz University of Technology,
Stefanowskiego 1/15, Lodz 90-924, Poland;
Potsdam Institute for Climate
Impact Research (PIK),
Potsdam 14473, Germany;
Impact Research (PIK),
Potsdam 14473, Germany;
Marian Wiercigroch
Centre for Applied Dynamics Research,
University of Aberdeen,
Kings College,
Aberdeen AB24 3UE, UK
e-mail: m.wiercigroch@abdn.ac.uk
University of Aberdeen,
Kings College,
Aberdeen AB24 3UE, UK
e-mail: m.wiercigroch@abdn.ac.uk
Przemyslaw Perlikowski
Division of Dynamics,
Lodz University of Technology,
Stefanowskiego 1/15,
Lodz 90-924, Poland
e-mail: przemyslaw.perlikowski@p.lodz.pl
Lodz University of Technology,
Stefanowskiego 1/15,
Lodz 90-924, Poland
e-mail: przemyslaw.perlikowski@p.lodz.pl
Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received December 19, 2016; final manuscript received February 4, 2017; published online September 7, 2017. Assoc. Editor: Stefano Lenci.
J. Comput. Nonlinear Dynam. Nov 2017, 12(6): 061017 (8 pages)
Published Online: September 7, 2017
Article history
Received:
December 19, 2016
Revised:
February 4, 2017
Citation
Simon Chong Escobar, A., Brzeski, P., Wiercigroch, M., and Perlikowski, P. (September 7, 2017). "Path-Following Bifurcation Analysis of Church Bell Dynamics." ASME. J. Comput. Nonlinear Dynam. November 2017; 12(6): 061017. https://doi.org/10.1115/1.4036114
Download citation file:
Get Email Alerts
Cited By
Sobolev-Type Nonlinear Hilfer Fractional Differential Equations With Control: Approximate Controllability Exploration
J. Comput. Nonlinear Dynam (November 2024)
Application of Laminate Theory to Plate Elements Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (November 2024)
Related Articles
Analytical and Numerical Investigations of Stable Periodic Solutions of the Impacting Oscillator With a Moving Base and Two Fenders
J. Comput. Nonlinear Dynam (November,2017)
Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
J. Comput. Nonlinear Dynam (July,2018)
Feedback Control of Grazing-Induced Chaos in the Single-Degree-of-Freedom Impact Oscillator
J. Comput. Nonlinear Dynam (January,2018)
On
Coexistence of Fractional-Order Hidden
Attractors
J. Comput. Nonlinear Dynam (September,2018)
Related Proceedings Papers
Related Chapters
Dynamic Behavior in a Singular Delayed Bioeconomic Model
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
Two-Dimension Simulation of a Red Blood Cell Partitioning in Microvascular Bifurcation
International Conference on Software Technology and Engineering (ICSTE 2012)
Effects of Network Structure on Public Opinion Development (PSAM-0116)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)