This paper aims to perform a complete Noether symmetry analysis of a generalized hyperbolic Lane–Emden system. Several constraints for which Noether symmetries exist are derived. In addition, we construct conservation laws associated with the admitted Noether symmetries. Thereafter, we briefly discuss the physical meaning of the derived conserved vectors.
Issue Section:
Research Papers
References
1.
Muatjetjeja
, B.
, and Khalique
, C. M.
, 2013
, “Conservation Laws for a Generalized Coupled Bidimensional Lane-Emden System
,” Commun. Nonlinear Sci. Numer. Simul.
, 18
(4
), pp. 851
–857
.2.
Bozhkov
, Y.
, and Martins
, A. C. G.
, 2004
, “Lie Point Symmetries of the Lane-Emden Systems
,” J. Math. Anal. Appl.
, 294
(1
), pp. 334
–344
.3.
Bozhkov
, Y.
, and Freire
, I. L.
, 2012
, “Symmetry Analysis of the Bidimensional Lane-Emden Systems
,” J. Math. Anal. Appl.
, 388
(2
), pp. 1279
–1284
.4.
Mogorosi
, T. E.
, Freire
, I. L.
, Muatjetjeja
, B.
, and Khalique
, C. M.
, 2017
, “Group Analysis of a Hyperbolic Lane-Emden System
,” Appl. Math. Comput.
, 292
, pp. 156
–164
.5.
Freire
, I. L.
, and Muatjetjeja
, B.
, 2018
, “Symmetry Analysis of a Lane-Emden-Klein-Gordon-Fock System With Central Symmetry
,” Discrete Contin. Dyn. Syst. Ser. S
, 11
(4
), pp. 685
–691
.6.
Bozhkov
, Y.
, and Mitidieri
, E.
, 2007
, “Lie Symmetries and Criticality of Semilinear Differential Systems
,” e-print arXiv:math-ph/0703071
.https://arxiv.org/abs/math-ph/07030717.
Serrin
, J.
, and Zou
, H.
, 1996
, “Non-Existence of Positive Solutions of Lane-Eden Systems
,” Differ. Integr. Equations
, 9
(4), pp. 635
–653
.8.
Muatjetjeja
, B.
, and Khalique
, C. M.
, 2014
, “Benjamin-Bona-Mahony Equation With Variable Coefficients: Conservation Laws
,” Symmetry
, 6
(4
), pp. 1026
–1036
.9.
Noether
, E.
, 1918
, “Invariante Variationsprobleme. König Gesell Wissen Göttingen
,” Math.-Phys. Kl Heft
, 2
(19), pp. 235
–257
.10.
Kara
, A. H.
, and Mahomed
, F. M.
, 2000
, “Relationship Between Symmetries and Conservation
,” Int. J. Theor. Phys.
, 39
(1
), pp. 23
–40
.11.
Akgül
, A.
, Inc
, M.
, Karatas
, E.
, and Baleanu
, D.
, 2015
, “Numerical Solutions of Fractional Differential Equations of Lane-Emden Type by an Accurate Technique
,” Adv. Differ. Equations
, 2015
(1
), p. 220
.12.
Kumar
, D.
, Singh
, J.
, and Baleanu
, D.
, 2018
, “A New Analysis of Fornberg-Whitham Equation Pertaining to a Fractional Derivative With Mittag-Leffler Type Kernel
,” Eur. Phys. J. Plus
, 133
(2
), p. 70
.13.
Kumar
, D.
, Singh
, J.
, and Baleanu
, D.
, 2018
, “Modified Kawahara Equation Within a Fractional Derivative With Non-Singular Kernel
,” Therm. Sci.
, 22
(2
), pp. 789
–796
.14.
Singh
, H.
, Srivastava
, H. M.
, and Kumar
, D.
, 2017
, “A Reliable Algorithm for the Approximate Solution of the Nonlinear Lane-Emden Type Equations Arising in Astrophysics
,” Numer. Methods Partial Differ. Equations
, 34
(5), pp. 1524
–1555
.15.
Kumar
, D.
, Agarwa
, R. P.
, and Singh
, J.
, 2018
, “A Modified Numerical Scheme and Convergence Analysis for Fractional Model of Lienard's Equation
,” J. Comput. Appl Math.
, 339
, pp. 405
–413
.16.
Kumar
, D.
, Singh
, J.
, and Baleanu
, D.
, 2017
, “A New Analysis for Fractional Model of Regularized Long-Wave Equation Arising in Ion Acoustic Plasma Waves
,” Math. Method. Appl. Sci.
, 40
(15
), pp. 5642
–5653
.Copyright © 2018 by ASME
You do not currently have access to this content.