Tooth friction is unavoidable and changes periodically in gear engagement. Friction excitation is an important excitation source of a gear transmission system. They are different than the friction coefficients of any two points on the same contact line of a helical/herringbone gear. In order to obtain the influence of the friction excitation on the dynamic response of a helical/herringbone planetary gear system, a method that uses piecewise solution and then summing them to analyze the friction force and frictional torque of tooth surfaces is proposed. Then, the friction coefficient is obtained based on the mixed elastohydrodynamic lubrication (EHL) theory. A dynamic model of a herringbone planetary gear system is established considering the friction, mesh stiffness, and meshing error excitation by the node finite element method. The influence of friction excitation on the dynamic response of the herringbone planetary gear is studied under different working conditions. The results show that friction excitation has a great influence on the vibration acceleration of the sun and planetary gear. However, the effect on the radial and tangential vibration acceleration of a planetary gear is the opposite. In addition, the friction excitation has a slight effect on the meshing force.

References

1.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
316
321
.
2.
Parker
,
R. G.
,
Agashe
,
V.
, and
Vijayakar
,
S. M.
,
2000
, “
Dynamic Response of a Planetary Gear System Using a Finite Element Contact Mechanics Model
,”
ASME J. Mech. Des.
,
304
(
3
), pp.
304
310
.
3.
Bahk
,
C.
, and
Parker
,
R. G.
,
2011
, “
Analytical Solution for the Nonlinear Dynamics of Planetary Gear
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021007
.
4.
Guo
,
Y.
, and
Parker
,
R. G.
,
2012
, “
Dynamic Analysis of Planetary Gears With Bearing Clearance
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041002
.
5.
Kahraman
,
A.
,
1994
, “
Planetary Gear System Dynamics
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
713
720
.
6.
Wei
,
J.
,
Zhang
,
A. Q.
,
Qin
,
D. T.
,
Lim
,
T. C.
,
Shu
,
R. Z.
,
Lin
,
X. Y.
, and
Meng
,
F. M.
,
2017
, “
A Coupling Dynamics Analysis Method for a Multistage Planetary Gear System
,”
Mech. Mach. Theory
,
110
, pp.
27
49
.
7.
Yang
,
F. C.
,
Shi
,
Z. X.
, and
Meng
,
J. F.
,
2013
, “
Nonlinear Dynamics and Load Sharing of Double-Mesh Helical Gear System
,”
J. Eng. Sci. Technol. Rev.
,
6
(
2
), pp.
29
34
.
8.
Sondkar
,
P.
, and
Kahraman
,
A.
,
2013
, “
A Dynamic Model of a Double-Helical Planetary Gear Set
,”
Mech. Mach. Theory
,
70
, pp.
157
174
.
9.
Wu
,
Y. J.
,
Wang
,
J. J.
, and
Han
,
Q. K.
,
2012
, “
Contact Finite Element Method for Dynamic Meshing Characteristics Analysis of Continuous Engaged Gear Drives
,”
J. Mech. Sci. Technol.
,
26
(
6
), pp.
1671
1685
.
10.
Howard
,
I.
,
Jia
,
S. X.
, and
Wang
,
J. D.
,
2001
, “
The Dynamic Modeling of a Spur Gear in Mesh Including Friction and a Crack
,”
Mech. Syst. Signal Process.
,
15
(
5
), pp.
831
853
.
11.
Vedmar
,
L.
, and
Andersson
,
A.
,
2003
, “
A Method to Determine Dynamic Loads on Spur Gear Teeth and on Bearings
,”
J. Sound Vib.
,
267
(
5
), pp.
1065
1084
.
12.
Vaishya
,
M.
, and
Singh
,
R.
,
2003
, “
Strategies for Modeling Friction in Gear Dynamics
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
383
393
.
13.
Liu
,
G.
, and
Parker
,
R. G.
,
2009
, “
Impact of Tooth Friction and Its Bending Effect on Gear Dynamics
,”
J. Sound Vib.
,
320
(
4–5
), pp.
1039
1063
.
14.
He
,
S.
,
Gunda
,
R.
, and
Singh
,
R.
,
2007
, “
Effect of Sliding Friction on the Dynamics of Spur Gear Pair With Realistic Time-Varying Stiffness
,”
J. Sound Vib.
,
301
(
3–5
), pp.
927
949
.
15.
He
,
S.
,
Cho
,
S.
, and
Singh
,
R.
,
2008
, “
Prediction of Dynamic Friction Forces in Spur Gears Using Alternate Sliding Friction Formulations
,”
J. Sound Vib.
,
309
(
3–5
), pp.
843
851
.
16.
Kar
,
C.
, and
Mohanty
,
A. R.
,
2007
, “
An Algorithm for Determination of Time-Varying Frictional Force and Torque in a Helical Gear System
,”
Mech. Mach. Theory
,
42
(
4
), pp.
482
496
.
17.
He
,
S.
, and
Singh
,
R.
,
2008
, “
Dynamic Transmission Error Prediction of Helical Gear Pair Under Sliding Friction Using Floquet Theory
,”
ASME J. Mech. Des.
,
130
(
5
), pp.
680
682
.
18.
He
,
S.
,
Gunda
,
R.
, and
Singh
,
R.
,
2007
, “
Inclusion of Sliding Friction in Contact Dynamics Model for Helical Gears
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
48
57
.
19.
Velex
,
P.
, and
Cahouet
,
V.
,
2000
, “
Experimental and Numerical Investigations on the Influence of Tooth Friction in Spur and Helical Gear Dynamics
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
515
522
.
20.
Xu
,
H.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Maddock
,
D. G.
,
2007
, “
Prediction of Mechanical Efficiency of Parallel-Axis Gear Pairs
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
58
68
.
21.
Castro
,
J.
, and
Seabra
,
J.
,
2007
, “
Coefficient of Friction in Mixed Film Lubrication: Gears Versus Twin-Discs
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
221
(
3
), pp.
399
411
.
22.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
2001
, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3D Surface Roughness
,”
Tribol. Trans.
,
44
(
3
), pp.
383
390
.
23.
Zhang
,
A. Q.
,
Wei
,
J.
,
Qin
,
D. T.
,
Hou
,
S. S.
, and
Lim
,
T. C.
,
2018
, “
Coupled Dynamic Characteristics of Wind Turbine Gearbox Driven by Ring Gear Considering Gravity
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
9
), p.
091009
.
24.
Ma
,
H.
,
Song
,
R. Z.
,
Pang
,
X.
, and
Wen
,
B. C.
,
2014
, “
Time-Varying Mesh Stiffness Calculation of Cracked Spur Gears
,”
Eng. Failure Anal.
,
44
(
6
), pp.
179
194
.
25.
Parker
,
R. G.
, and
Lin
,
J.
,
2004
, “
Mesh Phasing Relationships in Planetary and Epicyclic Gears
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
365
374
.
26.
Wei
,
J.
,
Bai
,
P. X.
,
Qin
,
D. T.
,
Lim
,
T. C.
,
Yang
,
P. W.
, and
Zhang
,
H.
,
2018
, “
Study on the Vibration Characteristics of the Fan Shaft of the Geared Turbofan Engine With Sudden Unbalance Caused by Blade Off
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041010
.
You do not currently have access to this content.