Abstract

In this article, a new algorithm is proposed to solve the nonlinear fractional-order one-dimensional solute transport system. The spectral collocation technique is considered with the Fibonacci polynomial as a basis function for the approximation. The Fibonacci polynomial is used to obtain derivative in terms of an operational matrix. The proposed algorithm is actually based on the fact that the terms of the considered problem are approximated through a series expansion of double Fibonacci polynomials and then collocated those on specific points, which provide a system of nonlinear algebraic equations which are solved by using Newton's method. To validate the precision of the proposed method, it is applied to solve three different problems having analytical solutions. The comparison of the results through error analysis is depicted through tables which clearly show the higher accuracy of order of convergence of the proposed method in less central processing unit (CPU) time. The salient feature of the article is the graphical exhibition of the movement of solute concentration for different particular cases due to the presence and absence of reaction term when the proposed scheme is applied to the considered nonlinear fractional-order space–time advection–reaction–diffusion model.

References

1.
Adomian
,
G.
,
2013
,
Solving Frontier Problems of Physics: The Decomposition Method
, Vol.
60
,
Springer Science & Business Media
, Berlin.
2.
Lin
,
Y.
, and
Xu
,
C.
,
2007
, “
Finite Difference/Spectral Approximations for the Time-Fractional Diffusion Equation
,”
J. Comput. Phys.
,
225
(
2
), pp.
1533
1552
.10.1016/j.jcp.2007.02.001
3.
Wu
,
J. L.
,
2009
, “
A Wavelet Operational Method for Solving Fractional Partial Differential Equations Numerically
,”
Appl. Math. Comput.
,
214
(
1
), pp.
31
40
.10.1016/j.amc.2009.03.066
4.
Das
,
S.
, and
Gupta
,
P.
,
2011
, “
Application of Homotopy Perturbation Method and Homotopy Analysis Method to Fractional Vibration Equation
,”
Int. J. Comput. Math.
,
88
(
2
), pp.
430
441
.10.1080/00207160903474214
5.
Das
,
S.
,
2009
, “
A Note on Fractional Diffusion Equations
,”
Chaos, Solitons Fractals
,
42
(
4
), pp.
2074
2079
.10.1016/j.chaos.2009.03.163
6.
Zaky
,
M.
,
Ezz-Eldien
,
S.
,
Doha
,
E.
,
Machado
,
J. T.
, and
Bhrawy
,
A.
,
2016
, “
An Efficient Operational Matrix Technique for Multidimensional Variable-Order Time Fractional Diffusion Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061002
.10.1115/1.4033723
7.
Murillo
,
J. Q.
, and
Yuste
,
S. B.
,
2011
, “
An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021014
.10.1115/1.4002687
8.
Razminia
,
K.
,
Razminia
,
A.
, and
Machado
,
J. T.
,
2016
, “
Analytical Solution of Fractional Order Diffusivity Equation With Wellbore Storage and Skin Effects
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
011006
.10.1115/1.4030534
9.
Vishal
,
K.
,
Kumar
,
S.
, and
Das
,
S.
,
2012
, “
Application of Homotopy Analysis Method for Fractional Swift Hohenberg Equation–Revisited
,”
Appl. Math. Modell.
,
36
(
8
), pp.
3630
3637
.10.1016/j.apm.2011.10.001
10.
Das
,
S.
,
Vishal
,
K.
,
Gupta
,
P.
, and
Yildirim
,
A.
,
2011
, “
An Approximate Analytical Solution of Time-Fractional Telegraph Equation
,”
Appl. Math. Comput.
,
217
(
18
), pp.
7405
7411
.
11.
Singh
,
A.
,
Das
,
S.
,
Ong
,
S.
, and
Jafari
,
H.
,
2019
, “
Numerical Solution of Nonlinear Reaction–Advection–Diffusion Equation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041003
.10.1115/1.4042687
12.
Arshad
,
S.
,
Baleanu
,
D.
,
Huang
,
J.
,
Al Qurashi
,
M.
,
Tang
,
Y.
, and
Zhao
,
Y.
,
2018
, “
Finite Difference Method for Time-Space Fractional Advection–Diffusion Equations With Riesz Derivative
,”
Entropy
,
20
(
5
), p.
321
.10.3390/e20050321
13.
Fernandez
,
A.
,
Baleanu
,
D.
, and
Fokas
,
A. S.
,
2018
, “
Solving Pdes of Fractional Order Using the Unified Transform Method
,”
Appl. Math. Comput.
,
339
, pp.
738
749
.10.1016/j.amc.2018.07.061
14.
Deng
,
W.
, and
Zhang
,
Z.
,
2019
, “
High Accuracy Algorithm for the Differential Equations Governing Anomalous Diffusion
,”
World Sci.
,
1
(
350
), pp.
978
981
.
15.
Koç
,
A. B.
,
Çakmak
,
M.
,
Kurnaz
,
A.
, and
Uslu
,
K.
,
2013
, “
A New Fibonacci Type Collocation Procedure for Boundary Value Problems
,”
Adv. Differ. Equations
,
2013
(
1
), p.
262
.10.1186/1687-1847-2013-262
16.
Koç
,
A. B.
,
Çakmak
,
M.
, and
Kurnaz
,
A.
,
2014
, “
A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments
,”
Adv. Math. Phys.
,
2014
, p.
694580
.10.1155/2014/694580
17.
Abd-Elhameed
,
W. M.
, and
Youssri
,
Y. H.
,
2016
, “
A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations
,”
Entropy
,
18
(
10
), p.
345
.10.3390/e18100345
18.
Saadatmandi
,
A.
, and
Dehghan
,
M.
,
2010
, “
A New Operational Matrix for Solving Fractional-Order Differential Equations
,”
Comput. Math. Appl.
,
59
(
3
), pp.
1326
1336
.10.1016/j.camwa.2009.07.006
19.
Tohidi
,
E.
, and
Nik
,
H. S.
,
2015
, “
A Bessel Collocation Method for Solving Fractional Optimal Control Problems
,”
Appl. Math. Modell.
,
39
(
2
), pp.
455
465
.10.1016/j.apm.2014.06.003
20.
Doha
,
E. H.
,
Bhrawy
,
A.
, and
Ezz-Eldien
,
S.
,
2011
, “
A Chebyshev Spectral Method Based on Operational Matrix for Initial and Boundary Value Problems of Fractional Order
,”
Comput. Math. Appl.
,
62
(
5
), pp.
2364
2373
.10.1016/j.camwa.2011.07.024
21.
Bear
,
J.
, and
Bachmat
,
Y.
,
1967
, “
A Generalized Theory on Hydrodynamic Dispersion in Porous Media
,”
IASH Symposium on Artificial Recharge and Management of Aquifers
, Vol.
72
, IASH Publ. Int. Union Geod. Geophys., Haifa, Israel, pp.
7
16
.
22.
Younes
,
A.
,
2005
, “
A Moving Grid Eulerian Lagrangian Localized Adjoint Method for Solving One-Dimensional Nonlinear Advection-Diffusion-Reaction Equations
,”
Transp. Porous Media
,
60
(
2
), pp.
241
250
.10.1007/s11242-004-4762-3
23.
Ahmed
,
M.
,
Zainab
,
Q. U. A.
, and
Qamar
,
S.
,
2017
, “
Analysis of One-Dimensional Advection–Diffusion Model With Variable Coefficients Describing Solute Transport in a Porous Medium
,”
Transp. Porous Media
,
118
(
3
), pp.
327
344
.10.1007/s11242-017-0833-0
24.
Guerrero
,
J. S. P.
,
Skaggs
,
T. H.
, and
Van Genuchten
,
M. T.
,
2009
, “
Analytical Solution for Multi-Species Contaminant Transport Subject to Sequential First-Order Decay Reactions in Finite Media
,”
Transp. Porous Media
,
80
(
2
), pp.
373
387
.10.1007/s11242-009-9368-3
25.
Deng
,
W.
,
Li
,
B.
,
Tian
,
W.
, and
Zhang
,
P.
,
2018
, “
Boundary Problems for the Fractional and Tempered Fractional Operators
,”
Multiscale Model. Simul.
,
16
(
1
), pp.
125
149
.10.1137/17M1116222
26.
Doha
,
E. H.
,
Abd-Elhameed
,
W. M.
, and
Bassuony
,
M.
,
2013
, “
New Algorithms for Solving High Even-Order Differential Equations Using Third and Fourth Chebyshev–Galerkin Methods
,”
J. Comput. Phys.
,
236
, pp.
563
579
.10.1016/j.jcp.2012.11.009
27.
Doha
,
E. H.
,
Abd-Elhameed
,
W. M.
, and
Bassuony
,
M. A.
,
2015
, “
On the Coefficients of Differentiated Expansions and Derivatives of Chebyshev Polynomials of the Third and Fourth Kinds
,”
Acta Math. Sci.
,
35
(
2
), pp.
326
338
.10.1016/S0252-9602(15)60004-2
28.
Doha
,
E.
, and
Abd-Elhameed
,
W.
,
2012
, “
Efficient Solutions of Multidimensional Sixth-Order Boundary Value Problems Using Symmetric Generalized Jacobi-Galerkin Method
,”
Abstr. Appl. Anal.
,
2012
, pp.
1
19
.10.1155/2012/749370
29.
Abd-Elhameed
,
W.
,
Doha
,
E.
, and
Youssri
,
Y.
,
2013
, “
Efficient Spectral-Petrov-Galerkin Methods for Third-and Fifth-Order Differential Equations Using General Parameters Generalized Jacobi Polynomials
,”
Quaestiones Math.
,
36
(
1
), pp.
15
38
.10.2989/16073606.2013.779945
30.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
, Vol.
198
,
Elsevier
, Amsterdam, The Netherlands.
31.
Falcon
,
S.
, and
Plaza
,
Á.
,
2009
, “
On k-Fibonacci Sequences and Polynomials and Their Derivatives
,”
Chaos, Solitons Fractals
,
39
(
3
), pp.
1005
1019
.10.1016/j.chaos.2007.03.007
32.
Byrd
,
P. F.
,
1963
, “
16 Expansion of Analytic Functions in Polynomials Associated With Fibonacci Numbers
,”
Fibonacci Q.
,
1
, p.
16
.
33.
Chang
,
P.
,
Kanwal
,
A.
,
Rong
,
L. J.
, and
Isah
,
A.
,
2016
, “
Legendre Operational Matrix for Solving Fractional Partial Differential Equations
,”
Int. J. Math. Anal.
,
10
(
19
), pp.
903
911
.10.12988/ijma.2016.6688
34.
Biazar
,
J.
, and
Aminikhah
,
H.
,
2009
, “
Exact and Numerical Solutions for Non-Linear Burger's Equation by Vim
,”
Math. Comput. Modell.
,
49
(
7–8
), pp.
1394
1400
.10.1016/j.mcm.2008.12.006
35.
Momani
,
S.
, and
Yıldırım
,
A.
,
2010
, “
Analytical Approximate Solutions of the Fractional Convection–Diffusion Equation With Nonlinear Source Term by He's Homotopy Perturbation Method
,”
Int. J. Comput. Math.
,
87
(
5
), pp.
1057
1065
.10.1080/00207160903023581
You do not currently have access to this content.