Abstract

Curving resistance is an important topic that requires a lot more research. This paper studied the implications of lateral coupler forces for curving resistance. More than 1800 simulations were conducted using a three-piece bogie wagon model developed in the simpack software package. The results show that lateral coupler forces have significant implications for curving resistance and that empty wagons are more sensitive to lateral forces than loaded wagons. With 20 kN lateral forces, curving resistance can be increased by 52% and 225% for loaded and empty wagons, respectively. The implications are significantly greater when the lateral forces are acting on the front and rear ends of a carbody have opposite directions. The differences caused by lateral forces that have opposite directions are more than two times greater than those caused by lateral forces that have the same direction. The results also show that, when front and rear lateral forces have the same direction, forces pushing toward the high rail are generally helpful in reducing curving resistance. However, curving resistance can be increased when these push forces are too high, or track curves already have high cant deficiency. When two lateral forces have opposite directions, curving resistance can be decreased when front lateral forces are pull forces toward low rail.

References

1.
Garg
,
V.
, and
Dukkipati
,
R.
,
1984
,
Dynamics of Railway Vehicle Systems
,
Elsevier
,
New York
.
2.
Cole
,
C.
,
Spiryagin
,
M.
,
Wu
,
Q.
, and
Sun
,
Y.
,
2017
, “
Modelling, Simulation and Applications of Longitudinal Train Dynamics
,”
Veh. Syst. Dyn.
,
55
(
10
), pp.
1498
1571
.10.1080/00423114.2017.1330484
3.
Lukaszewicz
,
P.
,
2001
, “
Energy Consumption and Running Time for Trains
,” Ph.D. thesis,
KTH
,
Stockholm, Sweden
.
4.
Szanto
,
F.
,
2016
, “
Rolling Resistance Revisited,” Paper Presented at Conference on Railway Excellence
,
Melbourne Australia
,
May 16–18
.
5.
Dick
,
M.
,
Wolf
,
G.
, and
Chislett
,
J.
,
2014
, “
Assessing the Effects of Coupler Force and Train Speed on Freight Car Curving Resistance
,”
J. Wheel/Rail Interact
, epub.http://interfacejournal.com/archives/384
6.
Recuero
,
A. M.
, and
Shabana
,
A. A. A.
,
2014
, “
Simple Procedure for the Solution of Three-Dimensional Wheel/Rail Conformal Contact Problem
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
034501
.10.1115/1.4026154
7.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2009
, “
On the Contact Search Algorithms for Wheel/Rail Contact Problems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041001
.10.1115/1.3187211
8.
Ignesti
,
M.
,
Marini
,
L.
,
Meli
,
E.
, and
Rindi
,
A.
,
2012
, “
Development of a Model for the Prediction of Wheel and Rail Wear in the Railway Field
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041004
.10.1115/1.4006732
9.
Wei
,
Z.
,
Shen
,
C.
,
Li
,
Z.
, and
Dollevoet
,
R.
,
2017
, “
Wheel–Rail Impact at Crossings: Relating Dynamic Frictional Contact to Degradation
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041016
.10.1115/1.4035823
10.
Cheli
,
F.
,
Di Gialleonardo
,
E.
, and
Melzi
,
S.
,
2017
, “
Freight Trains Dynamics: Effect of Payload and Braking Power Distribution on Coupling Forces
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
464
479
.10.1080/00423114.2016.1246743
11.
Pugi
,
L.
,
Rindi
,
A.
,
Ercole
,
A. G.
,
Palazzolo
,
A.
,
Auciello
,
J.
,
Fioravanti
,
D.
, and
Ignesti
,
M.
,
2011
, “
Preliminary Studies Concerning the Application of Different Braking Arrangements on Italian Freight Trains
,”
Veh. Syst. Dyn.
,
49
(
8
), pp.
1339
1365
.10.1080/00423114.2010.505291
12.
Oprea
,
R. A.
,
Cruceanu
,
C.
, and
Spiroiu
,
M. A.
,
2013
, “
Alternative Friction Models for Braking Train Dynamics
,”
Veh. Syst. Dyn.
,
51
(
3
), pp.
460
480
.10.1080/00423114.2012.744459
13.
Shabana
,
A. A.
,
Ding
,
L.
, and
Aboubakr
,
A. K.
,
2011
, “
Use of the Non-Inertial Coordinates in the Analysis of Train Longitudinal Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011001
.10.1115/1.4004122
14.
Bosso
,
N.
, and
Zampieri
,
N.
,
2017
, “
Long Train Simulation Using a Multibody Code
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
552
570
.10.1080/00423114.2016.1267373
15.
Cantone
,
L.
,
2011
, “
TrainDy: The New Union Internationale Des Chemins de Fer Software for Freight Train Interoperability
,”
J. Rail Rapid Transit.
,
225
(
1
), pp.
57
70
.10.1243/09544097JRRT347
16.
Szanto
,
F.
,
2012
, “
Curves-What a Drag!
” Conference on Railway Engineering
,
Brisbane Australia
,
Sept. 10–12
.
17.
Szanto
,
F.
,
2018
, “
Curve Drag Again
,” Conference on Railway Excellence
,
Sydney Australia
,
Apr. 30–May 2
.
18.
Conti
,
R.
,
Galardi
,
E.
,
Meli
,
E.
,
Nocciolini
,
E.
,
Pugi
,
L.
, and
Rindi
,
A.
,
2015
, “
Energy and Wear Optimisation of Train Longitudinal Dynamics and of Traction and Braking Systems
,”
Veh. Syst. Dyn.
,
53
(
5
), pp.
651
671
.10.1080/00423114.2014.990466
19.
Spiryagin
,
M.
,
Wu
,
Q.
,
Wolfs
,
P.
,
Sun
,
Y.
, and
Cole
,
C.
,
2018
, “
Comparison of Locomotive Energy Storage Systems for Heavy-Haul Operation
,”
Int. J. Rail Transport.
,
6
(
1
), pp.
1
15
.10.1080/23248378.2017.1325719
20.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2020
, “
Train Energy Simulation With Locomotive Adhesion Model
,”
Railway Eng. Sci.
,
28
(
1
), pp.
75
84
.10.1007/s40534-020-00202-1
21.
Qi
,
Z.
,
Huang
,
Z.
, and
Kong
,
X.
,
2012
, “
Simulation of Longitudinal Dynamics of Long Freight Trains in Positioning Operations
,”
Veh. Syst. Dyn.
,
50
(
9
), pp.
1049
1433
.10.1080/00423114.2012.661063
22.
Cole
,
C.
,
Spiryagin
,
M.
, and
Bosomworth
,
C.
,
2017
, “
Examining Longitudinal Train Dynamics in Ore Car Tipplers
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
534
551
.10.1080/00423114.2016.1263393
23.
Kovalev
,
R.
,
Sakalo
,
A.
,
Yazykov
,
V.
,
Shamdani
,
A.
,
Bowey
,
A.
, and
Wakeling
,
C.
,
2016
, “
Simulation of Longitudinal Dynamics of a Freight Train Operating Through a Car Dumper
,”
Veh. Syst. Dyn.
,
54
(
6
), pp.
707
722
.10.1080/00423114.2016.1153115
24.
Rick
,
F.
,
Grimm
,
R.
, and
Venter
,
G.
, “
Innovative Method for Measuring the Tractive Effort of Rail Vehicles
,” accessed Dec. 20, 2020, http://www.railway-research.org/IMG/pdf/050.pdf
25.
Manabe
,
S.
,
Ogawa
,
T.
,
Imamura
,
Y.
,
Minobe
,
S.
,
Kawamura
,
J.
, and
Kageyama
,
M.
,
2015
, “
A Method of Calculating Running Resistance Using Monitoring Devices for Energy Simulators
,” International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (
ESARS
), Aachen, Germany, Mar. 3–5.10.1109/ESARS.2015.7101432
26.
Schmidt
,
E.
,
1927
,
Freight Train Curve Resistance on a One-Decree Curve and a Three-Decree Curve
,
University of Illinois Engineering Experiment Station
,
Urbana–Champaign, IL
, Bulletin No. 167.
27.
Sapronova
,
S.
,
Tkachenko
,
V.
,
Fomin
,
O.
,
Kulbovskiy
,
I.
, and
Zub
,
E.
,
2017
, “
Rail Vehicles: The Resistance to the Movement and the Controllability. Monograph
,” Duit State University of Infrastructure and Technology, Dnipro, Ukraine.
28.
Astakhov
,
P.
,
1966
, “
Resistance to Motion of Railway Rolling Stock
,” Transport, Moscow.
29.
Deev
,
V.
,
Liin
,
G.
, and
Afonin
,
G.
,
1987
,
Traction of Trains. Study Guide for Universities
,
Transport
,
Moscow, Russia (In Russian)
.
30.
Tepic
,
J.
,
Kostelac
,
M.
, and
Herold
,
Z.
,
2009
, “
Methodology for Determining of Train Curving Resistances With Respect to Vehicle Mass and Speed
,”
Strojarstvo
,
51
(
6
), pp.
641
647
.https://hrcak.srce.hr/56784
31.
Spiryagin
,
M.
,
Persson
,
I.
,
Hayman
,
M.
,
Wu
,
Q.
,
Sun
,
Y.
,
Nielsen
,
D.
,
Bosomworth
,
C.
, and
Cole
,
C.
,
2019
, “
Friction Measurement and Creep Force Modelling Methodology for Locomotive Track Damage Studies
,”
Wear
,
432–433
, p.
202932
.10.1016/j.wear.2019.202932
32.
Wang
,
J.
,
Yang
,
J.
,
Zhao
,
Y.
,
Bai
,
Y.
, and
He
,
Y.
,
2020
, “
Nonsmooth Dynamics of a Gear–Wheelset System of Railway Vehicles Under Traction/Braking Conditions
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
8
), p.
081003
.10.1115/1.4047337
33.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2017
, “
Parallel Computing Scheme for Three-Dimensional Long Train System Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
044502
.10.1115/1.4035484
34.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2017
, “
Heavy Haul Locomotive Traction Performance Under the Implications of in-Train Forces
,”
First International Conference on Rail Transportation
,
China
,
Chengdu
, July 10–12, pp.
10
12
.
35.
Zhai
,
W.
, and
Wang
,
K.
,
2010
, “
Lateral Hunting Stability of Railway Vehicles Running on Elastic Track Structures
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041009
.10.1115/1.4001908
36.
Bruni
,
S.
,
Vinolas
,
J.
,
Berg
,
M.
,
Polach
,
O.
, and
Stichel
,
S.
,
2011
, “
Modelling of Suspension Components in a Rail Vehicle Dynamics Context
,”
Veh. Syst. Dyn.
,
49
(
7
), pp.
1021
1072
.10.1080/00423114.2011.586430
37.
Ballew
,
B.
,
Chan
,
B. J.
, and
Sandu
,
C.
,
2011
, “
Multibody Dynamics Modelling of the Freight Train Bogie System
,”
Veh. Syst. Dyn.
,
49
(
4
), pp.
501
526
.10.1080/00423110903259527
38.
Meymand
,
S.
,
Keylin
,
A.
, and
Ahmadian
,
M.
,
2016
, “
A Survey of Wheel–Rail Contact Models for Rail Vehicles
,”
Veh. Syst. Dyn.
,
54
(
3
), pp.
386
428
.10.1080/00423114.2015.1137956
39.
Wu
,
Q.
,
Cole
,
C.
,
Spiryagin
,
M.
, and
Sun
,
Y.
,
2014
, “
A Review of Dynamics Modelling of Friction Wedge Suspensions
,”
Veh. Syst. Dyn.
,
52
(
11
), pp.
1389
1415
.10.1080/00423114.2014.943249
40.
Rail Industry Safety and Standards Board,
2013
, “Track Geometry,” Rail Industry Safety and Standards Board, Canberra, Australia, Standard No. AS7635.
41.
Wu
,
Q.
,
Luo
,
S.
,
Xu
,
Z.
, and
Ma
,
W.
,
2013
, “
Coupler Jackknifing and Derailments of Locomotives on Tangent Track
,”
Veh. Syst. Dyn.
,
51
(
11
), pp.
1784
1800
.10.1080/00423114.2013.830184
42.
Vollebregt
,
E.
,
2019
,
User Guide for CONTACT, Rolling and Sliding Contact With Friction
,
VORtech CMCC, Delft
,
The Netherlands
, Report No. TR09-03.
43.
Zhao
,
X.
,
Li
,
Z.
, and
Dollevoet
,
R.
,
2014
, “
Influence of the Fastening Modeling on the Vehicle-Track Interaction at Singular Rail Surface Defects
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031002
.10.1115/1.4025895
44.
Chen
,
X.
,
Deng
,
X.
, and
Xu
,
L.
,
2018
, “
A Three-Dimensional Dynamic Model for Railway Vehicle–Track Interactions
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071006
.10.1115/1.4040254
45.
Wu
,
Q.
,
Sun
,
Y.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2018
, “
Parallel Co-Simulation Method for Railway Vehicle-Track Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
4
), p.
041004
.10.1115/1.4039310
46.
Meli
,
E.
,
Pugi
,
L.
, and
Ridolfi
,
A.
,
2014
, “
An Innovative Degraded Adhesion Model for Multibody Applications in the Railway Field
,”
Multibody Syst. Dyn.
,
32
(
2
), pp.
133
157
.10.1007/s11044-013-9400-9
47.
Bosso
,
N.
,
Gugliotta
,
A.
,
Magelli
,
M.
,
Oresta
,
I.
, and
Zampieri
,
N.
,
2019
, “
Study of Wheel-Rail Adhesion During Braking Maneuvers
,”
Procedia Struct. Integrity
,
24
, pp.
680
691
.10.1016/j.prostr.2020.02.060
48.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When, and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.10.1115/1.4027313
49.
Wu
,
Q.
,
Cole
,
C.
, and
Spiryagin
,
M.
,
2016
, “
Parallel Computing Enables Whole-Trip Train Dynamics Optimizations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
044503
.10.1115/1.4032075
You do not currently have access to this content.