Abstract

Within the framework of this article, we pursue a novel approach for the determination of time-optimal controls for dynamic systems under observance of end conditions. Such problems arise in robotics, e.g., if the control of a robot has to be designed such that the time for a rest-to-rest maneuver becomes a minimum. So far, such problems have been generally considered as two-point boundary value problems, which are hard to solve and require an initial guess close to the optimal solution. The aim of this work is the development of an iterative, gradient-based solution strategy, which can be applied even to complex multibody systems. The so-called adjoint method is a promising way to compute the direction of the steepest descent, i.e., the variation of a control signal causing the largest local decrease of the cost functional. The proposed approach will be more robust than solving the underlying boundary value problem, as the cost functional will be minimized iteratively while approaching the final conditions. Moreover, so-called influence differential equations are formulated to relate the changes of the controls and of the final conditions. In order to meet the end conditions, we introduce a descent direction that, on the one hand, approaches the optimum of the constrained cost functional and, on the other hand, reduces the error in the prescribed final conditions.

References

1.
Bryson
,
A. E.
,
1996
, “
Optimal Control-1950 to 1985
,”
IEEE Control Syst. Mag.
,
16
(
3
), pp.
26
33
.10.1109/37.506395
2.
Johnson
,
C.
, and
Gibson
,
J.
,
1963
, “
Singular Solutions in Problems of Optimal Control
,”
IEEE Trans. Autom. Control
,
8
(
1
), pp.
4
15
.10.1109/TAC.1963.1105505
3.
Kelley
,
H. J.
,
1962
, “
Method of Gradients
,”
Optimization Techniques With Applications to Aerospace Systems, Vol 5 of Mathematics in Science and Engineering
,
G.
Leitmann
, ed.,
Academic Press
,
New York
, pp.
206
254
.
4.
Bryson
,
A. E.
, and
Ho
,
Y.-C.
,
1975
,
Applied Optimal Control: Optimization, Estimation and Control
,
Hemisphere
,
Washington, DC
.
5.
Bertolazzi
,
E.
,
Biral
,
F.
, and
Lio
,
M. D.
,
2006
, “
Symbolic-Numeric Efficient Solution of Optimal Control Problems for Multibody Systems
,”
J. Comput. Appl. Math.
,
185
(
2
), pp.
404
421
.10.1016/j.cam.2005.03.019
6.
Rund
,
A.
,
Aigner
,
C. S.
,
Kunisch
,
K.
, and
Stollberger
,
R.
,
2018
, “
Simultaneous Multislice Refocusing Via Time Optimal Control
,”
Magn. Reson. Med.
,
80
(
4
), pp.
1416
1428
.10.1002/mrm.27124
7.
Rosen
,
J. B.
,
1960
, “
The Gradient Projection Method for Nonlinear Programming. Part I—Linear Constraints
,”
J. Soc. Ind. Appl. Math.
,
8
(
1
), pp.
181
217
.10.1137/0108011
8.
Meditch
,
J.
,
1964
, “
On the Problem of Optimal Thrust Programming for a Lunar Soft Landing
,”
IEEE Trans. Autom. Control
,
9
(
4
), pp.
477
484
.10.1109/TAC.1964.1105758
9.
Casanova
,
D.
,
2000
, “
On Minimum Time Vehicle Manoeuvring: The Theoretical Optimal Lap
,” Dissertation,
Cranfield University
,
Cranfield, UK
.
10.
Miller
,
D.
,
2014
, “
Optimal Trajectory Planning for the Apollo Moon Landing: Descent, Ascent, and Aborts
,”
MIT Technical Report
,
Cambridge, MA
.
11.
Wright
,
S. J.
,
1993
, “
Interior Point Methods for Optimal Control of Discrete-Time Systems
,”
J. Optim. Theory Appl.
,
77
(
1
), pp.
161
187
.10.1007/BF00940784
12.
Nachbagauer
,
K.
,
Oberpeilsteiner
,
S.
,
Sherif
,
K.
, and
Steiner
,
W.
,
2015
, “
The Use of the Adjoint Method for Solving Typical Optimization Problems in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p. 061011.10.1115/1.4028417
13.
Steiner
,
W.
, and
Reichl
,
S.
,
2012
, “
The Optimal Control Approach to Dynamical Inverse Problems
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
2
), p.
021010
.10.1115/1.4005365
14.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
Mech. Struct. Mach.
,
20
(
1
), pp.
67
92
.10.1080/08905459208905161
15.
Haug
,
E. J.
,
Wehage
,
R. A.
, and
Mani
,
N. K.
,
1984
, “
Design Sensitivity Analysis of Large-Scale Constrained Dynamic Mechanical Systems
,”
ASME J. Mech., Trans., Autom. Des.
,
106
(
2
), pp.
156
162
.10.1115/1.3258573
16.
Petzold
,
L.
,
Li
,
S.
,
Cao
,
Y.
, and
Serban
,
R.
,
2006
, “
Sensitivity Analysis of Differential-Algebraic Equations and Partial Differential Equations
,”
Comput. Chem. Eng.
,
30
(
10–12
), pp.
1553
1559
.10.1016/j.compchemeng.2006.05.015
17.
Cao
,
Y.
,
Li
,
S.
,
Petzold
,
L.
, and
Serban
,
R.
,
2003
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
1076
1089
.10.1137/S1064827501380630
18.
Eichmeir
,
P.
,
Lauß
,
T.
,
Oberpeilsteiner
,
S.
,
Nachbagauer
,
K.
, and
Steiner
,
W.
,
2021
, “
The Adjoint Method for Time-Optimal Control Problems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
2
), p.
021003
.10.1115/1.4048808
19.
Bhatti
,
M.
,
2012
,
Practical Optimization Methods: With Mathematica® Applications
,
Springer
,
Berlin, Heidelberg
.
20.
Pontryagin
,
L. S.
,
Boltyanskii
,
V. G.
,
Gamkrelidze
,
R. V.
, and
Mischchenko
, E. F.,
1962
, “
The Mathematical Theory of Optimal Processes
,”
John Wiley & Sons
,
New York
.
21.
Kirk
,
D.
,
2004
,
Optimal Control Theory: An Introduction
,
Dover Publications, Inc.
,
Mineola, NY
.
22.
Goldstein
,
H.
,
1985
,
Klassische Mechanik
,
Aula Verlag
,
Wiesbaden
.
23.
Timmermann
,
J.
,
Khatab
,
S.
,
Ober-Blöbaum
,
S.
, and
Trächtler
,
A.
,
2011
, “
Discrete Mechanics and Optimal Control and Its Application to a Double Pendulum on a Cart
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
10199
10206
.10.3182/20110828-6-IT-1002.01985
24.
Kierzenka
,
J.
, and
Shampine
,
L. F.
,
2001
, “
A BVP Solver Based on Residual Control and the MATLAB PSE
,”
ACM Trans. Math. Software
,
27
(
3
), pp.
299
316
.10.1145/502800.502801
25.
Seydel
,
R.
,
1984
, “
A Continuation Algorithm With Step Control
,”
In Numerical Methods for Bifurcation Problems
,
Birkhäuser
,
Basel
, pp.
480
494
.
26.
Halkin
,
H.
,
1964
, “
Method of Convex Ascent
,”
Computing Methods in Optimization Problems
,
Academic Press
,
New York
pp.
211
239
.
27.
Gottlieb
,
R.
,
1967
, “
Rapid Convergence to Optimum Solutions Using a Min-H Strategy
,”
AIAA J.
,
5
(
2
), pp.
322
329
.10.2514/3.3960
You do not currently have access to this content.