Abstract

This study proposes a new nonlinear dynamic model of rolling bearing faults based on a collision impact system. The dynamic model accounts for the collision impact system consisting of the rolling elements and localized faults according to the nonlinear Hertzian contact. First, considering the impact of the rolling element and fault structure, the collision impact system between rolling element and localized fault is established, and the vibration responses of the collision impact system can be obtained. Second, the overall rolling bearing is treated as a mass-spring model, and the contact between the rolling element and raceway is treated as a nonlinear spring that conforms to the Hertzian contact deformation theory. Third, according to the Lagrange equation, overall potential energy, overall kinetic energy, elastic potential energy, and kinetic energy of the collision impact system are used to describe the vibration characteristics. Considering the impact of collision impact systems, a nonlinear dynamic model of rolling bearing faults is established. The simulated acceleration results based on the nonlinear dynamic model are compared to experimental results. The comparison indicates that the numerical model can be used to predict the vibration characteristics of rolling bearings faults effectively.

References

1.
Zheng
,
L. K.
,
Xiang
,
Y.
, and
Sheng
,
C. X.
,
2019
, “
Optimization-Based Improved Kernel Extreme Learning Machine for Rolling Bearing Fault Diagnosis
,”
Braz. Soc. Mech. Sci. Eng.
,
2019
(
11
), pp.
1
14
.10.1007/s40430-019-2011-5
2.
Singh
,
S.
,
Köpke
,
U. G.
,
Howard
,
C. Q.
, and
Petersen
,
D.
,
2014
, “
Analyses of Contact Forces and Vibration Response for a Defective Rolling Element Bearing Using an Explicit Dynamics Finite Element Model
,”
J. Sound Vib.
,
333
(
21
), pp.
5356
5377
.10.1016/j.jsv.2014.05.011
3.
Harsha
,
S. P.
,
2006
, “
Nonlinear Dynamic Analysis of a High-Speed Rotor Supported by Rolling Element Bearings
,”
J. Sound Vib.
,
290
(
1–2
), pp.
65
100
.10.1016/j.jsv.2005.03.008
4.
Zheng
,
L. K.
, and
Xiang
,
Y.
,
2019
, “
PSO-Based Online Sequential Extreme Learning Machine for Classification and Engineering Application
,”
26th International Congress on Sound and Vibration
, Canada, pp.
1
8
.
5.
Harsha
,
S. P.
,
2006
, “
Nonlinear Dynamic Response of a Balanced Rotor Supported by Rolling Element Bearings Due to Radial Internal Clearance Effect
,”
Mechanism Mach. Theory
,
41
(
6
), pp.
688
706
.10.1016/j.mechmachtheory.2005.09.003
6.
Upadhyay
,
S. H.
,
Jain
,
S. C.
, and
Harsha
,
S. P.
,
2009
, “
Non-Linear Vibration Signature Analysis of a High-Speed Rotating Shaft Due to Ball Size Variations and Varying Number of Balls
,”
J. Multi-Body Dyn.
,
223
(
2
), pp.
83
105
.10.1243/14644193JMBD187
7.
Ahmad
,
W.
,
Khan
,
S. A.
,
Islam
,
M. M.
, and
Kim
,
J. M.
,
2019
, “
A Reliable Technique for Remaining Useful Life Estimation of Rolling Element Bearings Using Dynamic Regression Models
,”
Reliab. Eng. Syst. Saf.
,
184
, pp.
67
76
.10.1016/j.ress.2018.02.003
8.
Tadina
,
M.
, and
Boltežar
,
M.
,
2011
, “
Improved Model of a Ball Bearing for the Simulation of Vibration Signals Due to Faults During Run-Up
,”
J. Sound Vib.
,
330
(
17
), pp.
4287
4301
.10.1016/j.jsv.2011.03.031
9.
Zhang
,
X.
,
Han
,
Q.
,
Peng
,
Z.
, and
Chu
,
F.
,
2015
, “
A New Nonlinear Dynamic Model of the Rotor-Bearing System Considering Preload and Varying Contact Angle of the Bearing
,”
Commun Nonlinear Sci Numer Simul.
,
22
(
1–3
), pp.
821
841
.10.1016/j.cnsns.2014.07.024
10.
Ghafari
,
S. H.
,
Abdel-Rahman
,
E. M.
,
Golnaraghi
,
F.
, and
Ismail
,
F.
,
2010
, “
Vibrations of Balanced Fault-Free Ball Bearings
,”
J. Sound Vib.
,
329
(
9
), pp.
1332
47
.10.1016/j.jsv.2009.11.003
11.
Zhang
,
X.
,
Han
,
Q.
,
Peng
,
Z.
, and
Chu
,
F.
,
2013
, “
Stability Analysis of a Rotor-Bearing System With Time-Varying Bearing Stiffness Due to Finite Number of Balls and Unbalanced Force
,”
J. Sound Vib.
,
332
(
25
), pp.
6768
6784
.10.1016/j.jsv.2013.08.002
12.
Patra
,
P.
,
Saran
,
V. H.
, and
Harsha
,
S. P.
,
2018
, “
Non-Linear Dynamic Response Analysis of Cylindrical Roller Bearings Due to Rotational Speed
,”
Inst. Mech. Eng.
,
233
(
2
), pp.
1
12
.10.1177/1464419318762678
13.
Patel
,
V. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.10.1115/1.4002333
14.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.10.1016/j.ijmecsci.2010.05.005
15.
Nakhaeinejad
,
M.
, and
Bryant
,
M. D.
,
2011
, “
Dynamic Modeling of Rolling Element Bearings With Surface Contact Defects Using Bond Graphs
,”
ASME J. Tribol.
,
133
(
1
), p.
011102
.10.1115/1.4003088
16.
Liu
,
Y.
,
Xin
,
X.
,
Zhao
,
Y.
,
Ming
,
S.
,
Ma
,
Y.
, and
Han
,
J.
,
2019
, “
Study on Coupling Fault Dynamics of Sliding Bearing-Rotor System
,”
J. Comput. Nonlinear Dyn.
,
14
(
4
), pp.
1
15
.10.1115/1.4042688
17.
Jang
,
G.
, and
Jeong
,
S. W.
,
2004
, “
Vibration Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness
,”
J. Sound Vib.
,
269
(
3–5
), pp.
709
726
.10.1016/S0022-460X(03)00127-5
18.
Bai
,
C. Q.
, and
Xu
,
Q. Y.
,
2006
, “
Dynamic Model of Ball Bearings With Internal Clearance and Waviness
,”
J. Sound Vib.
,
294
, pp.
23
48
. 10.1016/j.jsv.2005.10.005
19.
Babu
,
C. K.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2012
, “
Vibration Modeling of a Rigid Rotor Supported on the Lubricated Angular Contact Ball Bearings Considering Six Degrees of Freedom and Waviness on Balls and Races
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011006
.10.1115/1.4005140
20.
Gjika
,
K.
,
San Andres
,
L.
, and
LaRue
,
G. D.
,
2010
, “
Nonlinear Dynamic Behavior of Turbocharger Rotor-Bearing Systems With Hydrodynamic Oil Film and Squeeze Film Damper in Series: Prediction and Experiment
,”
J. Comput. Nonlinear Dyn.
,
5
(
4
), pp.
2040
2049
.10.1115/1.4001817
21.
Jiang
,
Y.
,
Huang
,
W.
,
Luo
,
J.
, and
Wang
,
W.
,
2019
, “
An Improved Dynamic Model of Defective Bearings Considering the Three-Dimensional Geometric Relationship Between the Rolling Element and Defect Area
,”
Mech. Syst. Signal Process.
,
129
, pp.
694
716
.10.1016/j.ymssp.2019.04.056
22.
Liu
,
J.
, and
Shao
,
Y.
,
2017
, “
Dynamic Modeling for Rigid Rotor Bearing Systems With a Localized Defect Considering Additional Deformations at the Sharp Edges
,”
J. Sound Vib.
,
398
, pp.
84
102
.10.1016/j.jsv.2017.03.007
23.
Cao
,
H.
,
Li
,
Y.
, and
Chen
,
X.
,
2016
, “
A New Dynamic Model of Ball-Bearing Rotor Systems Based on Rigid Body Element
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071007
.10.1115/1.4032582
24.
Ahmadi
,
A. M.
,
Petersen
,
D.
, and
Howard
,
C.
,
2015
, “
A Nonlinear Dynamic Vibration Model of Defective Bearings–the Importance of Modelling the Finite Size of Rolling Elements
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
309
326
.10.1016/j.ymssp.2014.06.006
25.
Kogan
,
G.
,
Bortman
,
J.
, and
Klein
,
R.
,
2017
, “
A New Model for Spall-Rolling-Element Interaction
,”
Nonlinear Dyn.
,
87
(
1
), pp.
219
236
.10.1007/s11071-016-3037-1
26.
Kogan
,
G.
,
Klein
,
R.
,
Kushnirsky
,
A.
, and
Bortman
,
J.
,
2015
, “
Toward a 3D Dynamic Model of a Faulty Duplex Ball Bearing
,”
Mech. Syst. Signal Process.
,
54–55
, pp.
243
258
.10.1016/j.ymssp.2014.07.020
27.
Sheng
,
S. H.
, and
Ma
,
J. H.
,
2001
,
Introduction to the Analysis of Nonlinear Dynamical Systems
,
Science Press
,
Beijing, China
.
28.
Luo
,
G. W.
, and
Xie
,
J. H.
,
2004
,
Periodic Motion and Bifurcation of a Vibro-Impact System
,
Science Press
,
Beijing
, China.
29.
Zhang
,
Y. L.
,
Tang
,
B. B.
,
Wang
,
L.
, and
Du
,
S. S.
,
2017
, “
Dynamic Analysis for a Vibro-Impact System With Clearance Under Kinetic Friction
,”
J. Vib. Shock
,
34
, pp.
58
63
.10.13465/j.cnki.jvs.2017.24.009
30.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2010
,
Essential Concepts of Bearing Technology
,
China Machine Press
,
Beijing, China
.
31.
Krämer
,
E.
,
1993
,
Dynamics of Rotors and Foundations
,
Springer
,
New York
.
32.
Rao
,
S. S.
,
2009
,
Mechanical Vibrations, Fourth Edition
,
Tsinghua University Press
,
Beijing, China
.
You do not currently have access to this content.