Abstract
Aeroelastic systems have nonlinearities that provide a wide variety of complex dynamic behaviors. Nonlinear effects can be avoided in practical applications, as in instability suppression or desired, for instance, in the energy harvesting design. In the technical literature, there are surveys on nonlinear aeroelastic systems and the different manners they manifest. More recently, the bistable spring effect has been studied as an acceptable nonlinear behavior applied to mechanical vibration problems. The application of the bistable spring effect to aeroelastic problems is still not explored thoroughly. This paper contributes to analyzing the nonlinear dynamics of a typical airfoil section mounted on bistable spring support at plunging motion. The equations of motion are based on the typical aeroelastic section model with three degrees-of-freedom. Moreover, a hardening nonlinearity in pitch is also considered. A preliminary analysis of the bistable spring geometry's influence in its restoring force and the elastic potential energy is performed. The response of the system is investigated for a set of geometrical configurations. It is possible to identify post-flutter motion regions, the so-called intrawell and interwell. Results reveal that the transition between intrawell to interwell regions occurs smoothly, depending on the initial conditions. The bistable effect on the aeroelastic system can be advantageous in energy extraction problems due to the jump in oscillation amplitudes. Furthermore, the hardening effect in pitching motion reduces the limit cycle oscillation (LCO) amplitudes and also delays the occurrence of the snap-through.