Abstract

Aeroelastic systems have nonlinearities that provide a wide variety of complex dynamic behaviors. Nonlinear effects can be avoided in practical applications, as in instability suppression or desired, for instance, in the energy harvesting design. In the technical literature, there are surveys on nonlinear aeroelastic systems and the different manners they manifest. More recently, the bistable spring effect has been studied as an acceptable nonlinear behavior applied to mechanical vibration problems. The application of the bistable spring effect to aeroelastic problems is still not explored thoroughly. This paper contributes to analyzing the nonlinear dynamics of a typical airfoil section mounted on bistable spring support at plunging motion. The equations of motion are based on the typical aeroelastic section model with three degrees-of-freedom. Moreover, a hardening nonlinearity in pitch is also considered. A preliminary analysis of the bistable spring geometry's influence in its restoring force and the elastic potential energy is performed. The response of the system is investigated for a set of geometrical configurations. It is possible to identify post-flutter motion regions, the so-called intrawell and interwell. Results reveal that the transition between intrawell to interwell regions occurs smoothly, depending on the initial conditions. The bistable effect on the aeroelastic system can be advantageous in energy extraction problems due to the jump in oscillation amplitudes. Furthermore, the hardening effect in pitching motion reduces the limit cycle oscillation (LCO) amplitudes and also delays the occurrence of the snap-through.

References

1.
Dowell
,
E. H.
,
Edwards
,
J.
, and
Strganac
,
T.
,
2003
, “
Nonlinear Aeroelasticity
,”
J. Aircr.
,
40
(
5
), pp.
857
874
.10.2514/2.6876
2.
Abdelkefi
,
A.
,
2016
, “
Aeroelastic Energy Harvesting: A Review
,”
Int. J. Eng. Sci.
,
100
, pp.
112
135
.10.1016/j.ijengsci.2015.10.006
3.
Twiefel
,
J.
, and
Westermann
,
H.
,
2013
, “
Survey on Broadband Techniques for Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1291
1302
.10.1177/1045389X13476149
4.
Wang
,
E.
,
Ramesh
,
K.
,
Killen
,
S.
, and
Viola
,
I. M.
,
2018
, “
On the Nonlinear Dynamics of Self-Sustained Limit-Cycle Oscillations in a Flapping-Foil Energy Harvester
,”
J. Fluids Struct.
,
83
, pp.
339
357
.10.1016/j.jfluidstructs.2018.09.005
5.
Al-Mashhadani
,
W. J.
,
Dowell
,
E. H.
,
Wasmi
,
H. R.
, and
Al-Asadi
,
A. A.
,
2017
, “
Aeroelastic Response and Limit Cycle Oscillations for Wing-Flap-Tab Section With Freeplay in Tab
,”
J. Fluids Struct.
,
68
, pp.
403
422
.10.1016/j.jfluidstructs.2016.11.017
6.
dos Santos
,
C. R.
,
Pereira
,
D. A.
, and
Marques
,
F. D.
,
2017
, “
On Limit Cycle Oscillations of Typical Aeroelastic Section With Different Preset Angles of Incidence at Low Airspeeds
,”
J. Fluids Struct.
,
74
, pp.
19
34
.10.1016/j.jfluidstructs.2017.07.008
7.
Pereira
,
D. A.
,
Vasconcellos
,
R. M. G.
,
Hajj
,
M. R.
, and
Marques
,
F. D.
,
2016
, “
Effects of Combined Hardening and Free-Play Nonlinearities on the Response of a Typical Aeroelastic Section
,”
Aerosp. Sci. Technol.
,
50
, pp.
44
54
.10.1016/j.ast.2015.12.022
8.
Harne
,
R. L.
, and
Wang
,
K.-W.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing
,
Wiley
, Chichester, UK.
9.
Johnson
,
D. R.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
A Disturbance Cancellation Perspective on Vibration Control Using a Bistable Snap-Through Attachment
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031006
.10.1115/1.4026673
10.
Zhou
,
Z.
,
Qin
,
W.
,
Zhu
,
P.
, and
Shang
,
S.
,
2018
, “
Scavenging Wind Energy by a Y-Shaped Bi-Stable Energy Harvester With Curved Wings
,”
Energy
,
153
, pp.
400
412
.10.1016/j.energy.2018.04.035
11.
Scarselli
,
G.
,
Nicassio
,
F.
,
Pinto
,
F.
,
Ciampa
,
F.
,
Iervolino
,
O.
, and
Meo
,
M.
,
2016
, “
A Novel Bistable Energy Harvesting Concept
,”
Smart Mater. Struct.
,
25
(
5
), p.
055001
.10.1088/0964-1726/25/5/055001
12.
HaLevy
,
O.
,
Krakover
,
N.
, and
Krylov
,
S.
,
2020
, “
Feasibility Study of a Resonant Accelerometer With Bistable Electrostatically Actuated Cantilever as a Sensing Element
,”
Int. J. Non-Linear Mech.
,
118
, p.
103255
.10.1016/j.ijnonlinmec.2019.103255
13.
Yang
,
K.
,
Zhang
,
Z.
,
Zhang
,
Y.
, and
Huang
,
H.
,
2019
, “
High-Resolution Monitoring of Aerospace Structure Using the Bi-Furcation of a Bistable Nonlinear Circuit With Tunable Potential-Well Depth
,”
Aerosp. Sci. Technol.
,
87
, pp.
98
109
.10.1016/j.ast.2019.02.006
14.
Harne
,
R. L.
, and
Wang
,
K.-W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
15.
Wang
,
K.
,
Dai
,
X.
,
Xiang
,
X.
,
Ding
,
G.
, and
Zhao
,
X.
,
2019
, “
Optimal Potential Well for Maximizing Performance of Bi-Stable Energy Harvester
,”
Appl. Phys. Lett.
,
115
(
14
), p.
143904
.10.1063/1.5095693
16.
Nguyen
,
M. S.
,
Yoon
,
Y. J.
,
Kwon
,
O.
, and
Kim
,
P.
,
2017
, “
Lowering the Potential Barrier of a Bistable Energy Harvester With Mechanically Rectified Motion of an Auxiliary Magnet Oscillator
,”
Appl. Phys. Lett.
,
111
(
25
), p.
253905
.10.1063/1.4994111
17.
Yang
,
T.
,
Cao
,
Q.
,
Li
,
Q.
, and
Qiu
,
H.
,
2021
, “
A Multi-Directional Multi-Stable Device: Modeling, Experiment Verification and Applications
,”
Mech. Syst. Signal Process.
,
146
, p.
106986
.10.1016/j.ymssp.2020.106986
18.
Badhurshah
,
R.
,
Bhardwaj
,
R.
, and
Bhattacharya
,
A.
,
2019
, “
Lock-In Regimes for Vortex-Induced Vibrations of a Cylinder Attached to a Bistable Spring
,”
J. Fluids Struct.
,
91
, p.
102697
.10.1016/j.jfluidstructs.2019.102697
19.
Huynh
,
B. H.
, and
Tjahjowidodo
,
T.
,
2017
, “
Experimental Chaotic Quantification in Bistable Vortex Induced Vibration Systems
,”
Mech. Syst. Signal Process.
,
85
, pp.
1005
1019
.10.1016/j.ymssp.2016.09.025
20.
Huynh
,
B. H.
,
Tjahjowidodo
,
T.
,
Zhong
,
Z. W.
,
Wang
,
Y.
, and
Srikanth
,
N.
,
2018
, “
Design and Experiment of Controlled Bistable Vortex Induced Vibration Energy Harvesting Systems Operating in Chaotic Regions
,”
Mech. Syst. Signal Process.
,
98
, pp.
1097
1115
.10.1016/j.ymssp.2017.06.002
21.
Li
,
K.
,
Yang
,
Z.
, and
Zhou
,
S.
,
2020
, “
Performance Enhancement for a Magnetic-Coupled Bi-Stable Flutter-Based Energy Harvester
,”
Smart Mater. Struct.
,
29
(
8
), p.
085045
.10.1088/1361-665X/ab9238
22.
Zhao
,
L.
,
2020
, “
A Bistable Galloping Energy Harvester for Enhanced Concurrent Wind and Base Vibration Energy Harvesting
,”
Proc. SPIE
,
11376
, p.
1137603
.10.1117/12.2558465
23.
Zhou
,
Z.
,
Qin
,
W.
,
Zhu
,
P.
,
Du
,
W.
,
Deng
,
W.
, and
Pan
,
J.
,
2019
, “
Scavenging Wind Energy by a Dynamic-Stable Flutter Energy Harvester With Rectangular Wing
,”
Appl. Phys. Lett.
,
114
(
24
), p.
243902
.10.1063/1.5100598
24.
Wang
,
Y.
,
Zhou
,
Z.
,
Liu
,
Q.
,
Qin
,
W.
, and
Zhu
,
P.
,
2020
, “
Harvesting Variable-Speed Wind Energy With a Dynamic Multi-Stable Configuration
,”
Materials
,
13
(
6
), p.
1389
.10.3390/ma13061389
25.
Qin
,
W.
,
Deng
,
W.
,
Pan
,
J.
,
Zhou
,
Z.
,
Du
,
W.
, and
Zhu
,
P.
,
2019
, “
Harvesting Wind Energy With Bi-Stable Snap-Through Excited by Vortex-Induced Vibration and Galloping
,”
Energy
,
189
, p.
116237
.10.1016/j.energy.2019.116237
26.
Dowell
,
E. H.
,
Clark
,
R.
,
Cox
,
D.
,
Curtiss
,
H. C.
, Jr.
,
Edwards
,
J. W.
,
Hall
,
K. C.
,
Peters
,
D. A.
,
Scalan
,
R.
,
Simiu
,
E.
,
Sisto
,
F.
, and
Strganac
,
T.
,
2004
,
A Modern Course in Aeroelasticity
, 4th revised and enlarged ed.,
E. H.
Dowell
, ed.,
Klüwer Academic Publishers
, Dordrecht, The Netherlands.
27.
Vasconcellos
,
R. M. G.
,
Abdelkefi
,
A.
,
Marques
,
F. D.
, and
Hajj
,
M. R.
,
2012
, “
Representation and Analysis of Control Surface Freeplay Nonlinearity
,”
J. Fluids Struct.
,
31
, pp.
79
91
.10.1016/j.jfluidstructs.2012.02.003
28.
Theodorsen
,
T.
,
1935
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” National Advisory Committee for Aeronautics (NACA), Washington, DC, Technical Report No.
NACA TR 496
. https://digital.library.unt.edu/ark:/67531/metadc53413/
You do not currently have access to this content.