Abstract

This paper investigates the coupled nonlinear Hirota–Maccari system with the help of using an analytical approach, which is the extended sinh-Gordon equation expansion method (ShGEEM). Complex, solitary, and singular periodic traveling solutions are successfully gained to the nonlinear model considered. The constraint conditions that validate the existence of the reported soliton solutions are also given in a detailed manner. The two-dimensional (2D), three-dimensional, and contour graphs to some of the obtained solutions are presented via several computational programs. These simulations present deeper investigations about the wave distributions of the coupled nonlinear Hirota–Maccari system.

References

1.
Abdou
,
M. A.
,
2008
, “
New Explicit Exact Solutions of Nonlinear Evolution Equations Using the Generalized Auxiliary Equation Method Combined With Exp-Function Method
,”
Int. J. Nonlinear Sci.
,
6
(
3
), pp.
208
215
. http://www.internonlinearscience.org/upload/papers/20110307064853650.pdf
2.
Jahani
,
M.
, and
Manafian
,
J.
,
2016
, “
Improvement of the Exp-Function Method for Solving the BBM Equation With Time-Dependent Coefficients
,”
Eur. Phys. J. Plus
,
131
(
3
), p.
54
.10.1140/epjp/i2016-16054-2
3.
He
,
J. H.
, and
Wu
,
X. H.
,
2006
, “
Exp-Function Method for Nonlinear Wave Equations
,”
Chaos, Solitons Fractals
,
30
(
3
), pp.
700
708
.10.1016/j.chaos.2006.03.020
4.
Gurefe
,
Y.
, and
Misirli
,
E.
,
2011
, “
Exp-Function Method for Solving Nonlinear Evolution Equations With Higher Order Nonlinearity
,”
Comput. Math. Appl.
,
61
(
8
), pp.
2025
2030
.10.1016/j.camwa.2010.08.060
5.
Khan
,
K.
, and
Akbar
,
M. A.
,
2014
, “
Traveling Wave Solutions of Nonlinear Evolution Equations Via the Enhanced (G'/G)-Expansion Method
,”
J. Egypt. Math. Soc.
,
22
(
2
), pp.
220
226
.10.1016/j.joems.2013.07.009
6.
Wang
,
M. L.
,
Li
,
X.
, and
Zhang
,
J.
,
2008
, “
The (G′/G)-Expansion Method and Traveling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics
,”
Phys. Lett. A
,
372
(
4
), pp.
417
423
.10.1016/j.physleta.2007.07.051
7.
Liu
,
L.
,
Tian
,
B.
,
Chai
,
J.
, and
Chai
,
H. P.
,
2017
, “
Soliton Interactions for a Generalized Variable-Coefficient Coupled Higher-Order Nonlinear Schrödinger System in an Inhomogeneous Optical Fiber
,”
Laser Phys.
,
27
(
7
), p.
075402
.10.1088/1555-6611/aa6be7
8.
Wang
,
P.
,
2014
, “
Soliton Solutions for Some X-Dependent Nonlinear Evolution Equations
,”
Phys. Scr.
,
89
, p.
035203
.10.1088/0031-8949/89/03/035203
9.
Bulut
,
H.
,
Sulaiman
,
T. A.
, and
Baskonus
,
H. M.
,
2016
, “
New Solitary and Optical Wave Structures to the Korteweg-de Vries Equation With Dual-Power Law Nonlinearity
,”
Opt. Quantum Electron.
,
48
, p.
564
.10.1007/s11082-016-0831-4
10.
Bulut
,
H.
,
Isik
,
H. A.
, and
Sulaiman
,
T. A.
,
2017
, “
On Some Complex Aspects of the (2 + 1)-Dimensional Broer-Kaup-Kupershmidt System
,”
ITM Web Conf.
,
13
, p.
01019
.10.1051/itmconf/20171301019
11.
Yel
,
G.
,
Baskonus
,
H. M.
, and
Bulut
,
H.
,
2017
, “
Novel Archetypes of New Coupled Konno-Oono Equation by Using sine-Gordon Expansion Method
,”
Opt. Quantum Electron.
,
49
(
285
), pp.
1
10
.10.1007/s11082-017-1127-z
12.
Bulut
,
H.
,
Sulaiman
,
T. A.
,
Baskonus
,
H. M.
, and
Sandulyak
,
A. A.
,
2017
, “
New Solitary and Optical Wave Structures to the (1 + 1)-Dimensional Combined KdV–mKdV Equation
,”
Optik
,
135
, pp.
327
336
.10.1016/j.ijleo.2017.01.071
13.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2019
, “
New Aspects of Fractional Biswas–Milovic Model With Mittag-Leffler Law
,”
Math. Modell. Nat. Phenom.
,
14
(
3
), p.
303
.10.1051/mmnp/2018068
14.
Wazwaz
,
A. M.
,
2012
, “
Abundant Soliton and Periodic Wave solutions for the Coupled Higgs Field equation, the Maccari System and the Hirota–Maccari System
,”
Phys. Scr.
,
85
, p.
065011
.10.1088/0031-8949/85/06/065011
15.
Yu
,
X.
,
Gao
,
Y. T.
,
Sun
,
Z. Y.
,
Meng
,
X. H.
,
Liu
,
Y.
,
Feng
,
Q.
, and
Wang
,
M. Z.
,
2011
, “
N-Soliton Solutions for the (2 + 1)-Dimensional Hirota–Maccari Equation in Fluids, Plasmas and Optical Fibers
,”
J. Math. Anal. Appl.
,
378
(
2
), pp.
519
527
.10.1016/j.jmaa.2010.12.019
16.
Maccari
,
A.
,
1996
, “
The Kadomtsev–Petviashvili Equation as a Source of Integrable Model Equations
,”
J. Math. Phys.
,
37
(
12
), pp.
6207
6212
.10.1063/1.531773
17.
Maccari
,
A.
,
1998
, “
A Generalized Hirota Equation in (2 + 1) Dimensions
,”
J. Math. Phys.
,
39
(
12
), pp.
6547
6551
.10.1063/1.532664
18.
Feng
,
L. Z.
, and
Yan
,
T. X.
,
2010
, “
Modulational Instability and Variable Separation Solution for a Generalized (2 + 1)-Dimensional Hirota Equation
,”
Chin. Phys. Lett.
,
27
(
030201
), pp.
1
5
.10.1088/0256-307X/27/3/030201
19.
Yang
,
X. L.
, and
Tang
,
J. S.
,
2008
, “
Travelling Wave Solutions for Konopelchenko–Dubrovsky Equation Using an Extended sinh-Gordon Equation Expansion Method
,”
Commun. Theor. Phys.
,
50
, pp.
1047
1051
.10.1088/0253-6102/50/5/06
20.
El-Borai
,
M. M.
,
El-Owaidy
,
H. M.
,
Ahmed
,
H. M.
, and
Arnous
,
A. H.
,
2016
, “
Soliton Solutions of Hirota Equation and Hirota-Maccari System
,”
New Trends Math. Sci.
,
4
(
3
), pp.
231
238
.10.20852/ntmsci.2019.348
21.
Scott
,
A. C.
,
2005
,
Encyclopaedia of Nonlinear Science
,
Routledge, Taylor and Francis Group
,
New York
.
22.
Rosenau
,
P.
,
2005
, “
What is a Compaction?
,”
Not. Am. Math. Soc.
,
52
(
7
), pp.
738
739
.www.ams.org/notices/200507/what-is.pdf
23.
Camassa
,
R.
, and
Holm
,
D. D.
,
1993
, “
An Integrable Shallow Water Equation With Peaked Solitons
,”
Phys. Rev. Lett.
,
71
(
11
), pp.
1661
1664
.10.1103/PhysRevLett.71.1661
24.
Baskonus
,
H. M.
,
Bulut
,
H.
, and
Sulaiman
,
T. A.
,
2019
, “
New Complex Hyperbolic Structures to the Lonngren-Wave Equation by Using Sine-Gordon Expansion Method
,”
Appl. Math. Nonlinear Sci.
,
4
(
1
), pp.
129
150
.10.2478/AMNS.2019.1.00013
25.
Veeresha
,
P.
,
Prakasha
,
D. G.
,
Kumar
,
D.
,
Baleanu
,
D.
, and
Singh
,
J.
,
2020
, “
An Efficient Computational Technique for Fractional Model of Generalized Hirota-Satsuma Coupled KdV and Coupled mKdV Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
7
), p.
071003
.10.1115/1.4046898
26.
SinghKumar
,
J. D.
,
Baleanu
,
D.
, and
Rathore
,
S.
,
2018
, “
An Efficient Numerical Algorithm for the Fractional Drinfeld–Sokolov–Wilson Equation
,”
Appl. Math. Comput.
,
335
, pp.
12
24
.10.1016/j.amc.2018.04.025
27.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
Analysis of a Fractional Model of the Ambartsumian Equation
,”
Eur. Phys. J. Plus
,
133
, p.
259
.10.1140/epjp/i2018-12081-3
28.
Yel
,
G.
,
2019
, “
On the New Travelling Wave Solution of a Neural Communication Model
,”
BAUN Fen Bil. Enst. Derg.
,
21
(
2
), pp.
666
678
.
29.
Goswami
,
A.
,
Singh
,
J.
,
Kumar
.,
D.
, and
Sushila
,
2019
, “
An Efficient Analytical Approach for Fractional Equal Width Equations Describing Hydro-Magnetic Waves in Cold Plasma
,”
Phys. A
,
524
(
C
), pp.
563
575
.10.1016/j.physa.2019.04.058
30.
Eskitaşçıoğlu
,
E. İ.
,
Aktaş
,
M. B.
, and
Baskonus
,
H. M.
,
2019
, “
New Complex and Hyperbolic Forms for Ablowitz-Kaup-Newell-Segur Wave Equation With Fourth Order
,”
Appl. Math. Nonlinear Sci.
,
4
(
1
), pp.
93
112
.10.2478/AMNS.2019.1.00010
31.
Asif
,
N. A.
,
Hammouch
,
Z.
,
Riaz
,
M. B.
, and
Bulut
,
H.
,
2018
, “
Analytical Solution of a Maxwell Fluid With Slip Effects in View of the Caputo-Fabrizio Derivative
,”
Eur. Phys. J. Plus
,
133
(
272
), pp.
1
13
.10.1140/epjp/i2018-12098-6
32.
Celik
,
E.
,
Bulut
,
H.
, and
Baskonus
,
H. M.
,
2018
, “
Novel Features of the Nonlinear Model Arising in Nano-Ionic Currents Throughout Microtubules
,”
Indian J. Phys.
,
92
(
9
), pp.
1137
1143
.10.1007/s12648-018-1201-9
33.
Ciancio
,
A.
,
Baskonus
,
H. M.
,
Sulaiman
,
T. A.
, and
Bulut
,
H.
,
2018
, “
New Structural Dynamics of Isolated Waves Via the Coupled Nonlinear Maccari's System With Complex Structure
,”
Indian J. Phys.
,
92
(
10
), pp.
1281
1290
.10.1007/s12648-018-1204-6
34.
Yokus
,
A.
,
Baskonus
,
H. M.
,
Sulaiman
,
T. A.
, and
Bulut
,
H.
,
2018
, “
Numerical Simulation and Solutions of the Two-Component Second Order KdV Evolutionary System
,”
Numer. Methods Partial Differential Equations
,
34
(
1
), pp.
211
227
.10.1002/num.22192
35.
Cattani
,
C.
, and
Rushchitskii
,
Y. Y.
,
2003
, “
Cubically Nonlinear Elastic Waves: Wave Equations and Methods of Analysis
,”
Int. Appl. Mech.
,
39
(
10
), pp.
1115
1145
.10.1023/B:INAM.0000010366.48158.48
36.
Amkadni
,
M.
,
Azzouzi
,
A.
, and
Hammouch
,
Z.
,
2008
, “
On the Exact Solutions of Laminar MHD Flow Over a Stretching Flat Plate
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
2
), pp.
359
368
.10.1016/j.cnsns.2006.04.002
37.
Dusunceli
,
F.
,
2019
, “
New Exponential and Complex Traveling Wave Solutions to the Konopelchenko-Dubrovsky Model
,”
Adv. Math. Phys.
,
2019
(
7801247
), pp.
1
9
.10.1155/2019/7801247
38.
Yel
,
G.
,
2020
, “
New Wave Patterns to the Doubly Dispersive Equation in Nonlinear Dynamic Elasticity
,”
Pramana
,
94
(
1
), p.
79
.10.1007/s12043-020-1941-x
39.
Cattani
,
C.
, and
Ciancio
,
A.
,
2007
, “
Hybrid Two Scales Mathematical Tools for Active Particles Modelling Complex Systems With Learning Hiding Dynamics
,”
Math. Models Methods Appl. Sci.
,
17
(
2
), pp.
171
187
.10.1142/S0218202507001875
40.
Haq
,
R.
,
Ahmed
,
S. F.
, and
Hammouch
,
Z.
,
2018
, “
Heat Transfer Analysis of CuO-Water Enclosed in a Partially Heated Rhombus With Heated Square Obstacle
,”
Int. J. Heat Mass Transfer
,
118
, pp.
773
784
.10.1016/j.ijheatmasstransfer.2017.11.043
41.
Sulaiman
,
T. A.
,
Yokus
,
A.
,
Gulluoglu
,
N.
,
Baskonus
,
H. M.
, and
Bulut
,
H.
,
2018
, “
Regarding the Numerical and Stability Analysis of the Sharma-Tosso-Olver Equation
,”
ITM Web Conf.
,
22
(
01036
), p.
01036
.10.1051/itmconf/20182201036
42.
Cattani
,
C.
,
Rushchitsky
,
J. J.
, and
Sinchilo
,
S. V.
,
2005
, “
Physical Constants for One Type of Nonlinearly Elastic Fibrous Micro-and Nanocomposites With Hard and Soft Nonlinearities
,”
Int. Appl. Mech.
,
41
(
12
), pp.
1368
1377
.10.1007/s10778-006-0044-9
43.
Sulaiman
,
T. A.
,
Bulut
,
H.
,
Yokus
,
A.
, and
Baskonus
,
H. M.
,
2019
, “
On the Exact and Numerical Solutions to the Coupled Boussinesq Equation Arising in Ocean Engineering
,”
Indian J. Phys.
,
93
(
5
), pp.
647
656
.10.1007/s12648-018-1322-1
44.
Tekiyeh
,
R. M.
,
Manafian
,
J.
,
Baskonus
,
H. M.
, and
Dusunceli
,
F.
,
2019
, “
Applications of He's Semi-Inverse Variational Method and ITEM to the Nonlinear Long-Short Wave Interaction System
,”
Int. J. Adv. Appl. Sci.
,
6
(
8
), pp.
53
64
.10.21833/ijaas.2019.08.008
45.
Dusunceli
,
F.
,
2018
, “
Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method
,”
MSU J. Sci.
,
6
(
1
), pp.
505
510
.10.18586/msufbd.403217
46.
Cattani
,
C.
, and
Rushchitskii
,
Y. Y.
,
2003
, “
Nonlinear Versus Quadratically Nonlinear Elastic Waves: Main Waves Effects
,”
Int. Appl. Mech.
,
39
(
12
), pp.
1361
1399
.10.1023/B:INAM.0000020823.49759.c9
47.
Yokus
,
A.
,
Sulaiman
,
T. A.
,
Gulluoglu
,
M. T.
, and
Bulut
,
H.
,
2018
, “
Stability Analysis, Numerical and Exact Solutions of the (1 + 1)-Dimensional NDMBBM Equation
,”
ITM Web Conf.
,
22
, p.
01064
.10.1051/itmconf/20182201064
48.
Baskonus
,
H. M.
,
2019
, “
Complex Soliton Solutions to the Gilson-Pickering Model
,”
Axioms
,
8
(
1
), p.
18
.10.3390/axioms8010018
49.
Yokus
,
A.
,
Sulaiman
,
T. A.
,
Baskonus
,
H. M.
, and
Atmaca
,
S. P.
,
2018
, “
On the Exact and Numerical Solutions to a Nonlinear Model Arising in Mathematical Biology
,”
ITM Web Conf.
,
22
, p.
01061
.10.1051/itmconf/20182201061
50.
Cattani
,
C.
,
Sulaiman
,
T. A.
,
Baskonus
,
H. M.
, and
Bulut
,
H.
,
2018
, “
Solitons in an Inhomogeneous Murnaghan's Rod
,”
Eur. Phys. J. Plus
,
133
(
228
), pp.
1
12
.10.1140/epjp/i2018-12085-y
51.
Cattani
,
C.
,
Sulaiman
,
T. A.
,
Baskonus
,
H. M.
, and
Bulut
,
H.
,
2018
, “
On the Soliton Solutions to the Nizhnik-Novikov-Veselov and the Drinfel'd-Sokolov Systems
,”
Opt. Quantum Electron.
,
50
(
3
), p.
138
.10.1007/s11082-018-1406-3
You do not currently have access to this content.