Abstract
This paper investigates the coupled nonlinear Hirota–Maccari system with the help of using an analytical approach, which is the extended sinh-Gordon equation expansion method (ShGEEM). Complex, solitary, and singular periodic traveling solutions are successfully gained to the nonlinear model considered. The constraint conditions that validate the existence of the reported soliton solutions are also given in a detailed manner. The two-dimensional (2D), three-dimensional, and contour graphs to some of the obtained solutions are presented via several computational programs. These simulations present deeper investigations about the wave distributions of the coupled nonlinear Hirota–Maccari system.
Issue Section:
Research Papers
References
1.
Abdou
,
M. A.
, 2008
, “
New Explicit Exact Solutions of Nonlinear Evolution Equations Using the Generalized Auxiliary Equation Method Combined With Exp-Function Method
,” Int. J. Nonlinear Sci.
,
6
(3
), pp. 208
–215
. http://www.internonlinearscience.org/upload/papers/20110307064853650.pdf2.
Jahani
,
M.
, and
Manafian
,
J.
, 2016
, “
Improvement of the Exp-Function Method for Solving the BBM Equation With Time-Dependent Coefficients
,” Eur. Phys. J. Plus
,
131
(3
), p. 54
.10.1140/epjp/i2016-16054-23.
He
,
J. H.
, and
Wu
,
X. H.
, 2006
, “
Exp-Function Method for Nonlinear Wave Equations
,” Chaos, Solitons Fractals
,
30
(3
), pp. 700
–708
.10.1016/j.chaos.2006.03.0204.
Gurefe
,
Y.
, and
Misirli
,
E.
, 2011
, “
Exp-Function Method for Solving Nonlinear Evolution Equations With Higher Order Nonlinearity
,” Comput. Math. Appl.
,
61
(8
), pp. 2025
–2030
.10.1016/j.camwa.2010.08.0605.
Khan
,
K.
, and
Akbar
,
M. A.
, 2014
, “
Traveling Wave Solutions of Nonlinear Evolution Equations Via the Enhanced (G'/G)-Expansion Method
,” J. Egypt. Math. Soc.
,
22
(2
), pp. 220
–226
.10.1016/j.joems.2013.07.0096.
Wang
,
M. L.
,
Li
,
X.
, and
Zhang
,
J.
, 2008
, “
The (G′/G)-Expansion Method and Traveling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics
,” Phys. Lett. A
,
372
(4
), pp. 417
–423
.10.1016/j.physleta.2007.07.0517.
Liu
,
L.
,
Tian
,
B.
,
Chai
,
J.
, and
Chai
,
H. P.
, 2017
, “
Soliton Interactions for a Generalized Variable-Coefficient Coupled Higher-Order Nonlinear Schrödinger System in an Inhomogeneous Optical Fiber
,” Laser Phys.
,
27
(7
), p. 075402
.10.1088/1555-6611/aa6be78.
Wang
,
P.
, 2014
, “
Soliton Solutions for Some X-Dependent Nonlinear Evolution Equations
,” Phys. Scr.
,
89
, p. 035203
.10.1088/0031-8949/89/03/0352039.
Bulut
,
H.
,
Sulaiman
,
T. A.
, and
Baskonus
,
H. M.
, 2016
, “
New Solitary and Optical Wave Structures to the Korteweg-de Vries Equation With Dual-Power Law Nonlinearity
,” Opt. Quantum Electron.
,
48
, p. 564
.10.1007/s11082-016-0831-410.
Bulut
,
H.
,
Isik
,
H. A.
, and
Sulaiman
,
T. A.
, 2017
, “
On Some Complex Aspects of the (2 + 1)-Dimensional Broer-Kaup-Kupershmidt System
,” ITM Web Conf.
,
13
, p. 01019
.10.1051/itmconf/2017130101911.
Yel
,
G.
,
Baskonus
,
H. M.
, and
Bulut
,
H.
, 2017
, “
Novel Archetypes of New Coupled Konno-Oono Equation by Using sine-Gordon Expansion Method
,” Opt. Quantum Electron.
,
49
(285
), pp. 1
–10
.10.1007/s11082-017-1127-z12.
Bulut
,
H.
,
Sulaiman
,
T. A.
,
Baskonus
,
H. M.
, and
Sandulyak
,
A. A.
, 2017
, “
New Solitary and Optical Wave Structures to the (1 + 1)-Dimensional Combined KdV–mKdV Equation
,” Optik
,
135
, pp. 327
–336
.10.1016/j.ijleo.2017.01.07113.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
, 2019
, “
New Aspects of Fractional Biswas–Milovic Model With Mittag-Leffler Law
,” Math. Modell. Nat. Phenom.
,
14
(3
), p. 303
.10.1051/mmnp/201806814.
Wazwaz
,
A. M.
, 2012
, “
Abundant Soliton and Periodic Wave solutions for the Coupled Higgs Field equation, the Maccari System and the Hirota–Maccari System
,” Phys. Scr.
,
85
, p. 065011
.10.1088/0031-8949/85/06/06501115.
Yu
,
X.
,
Gao
,
Y. T.
,
Sun
,
Z. Y.
,
Meng
,
X. H.
,
Liu
,
Y.
,
Feng
,
Q.
, and
Wang
,
M. Z.
, 2011
, “
N-Soliton Solutions for the (2 + 1)-Dimensional Hirota–Maccari Equation in Fluids, Plasmas and Optical Fibers
,” J. Math. Anal. Appl.
,
378
(2
), pp. 519
–527
.10.1016/j.jmaa.2010.12.01916.
Maccari
,
A.
, 1996
, “
The Kadomtsev–Petviashvili Equation as a Source of Integrable Model Equations
,” J. Math. Phys.
,
37
(12
), pp. 6207
–6212
.10.1063/1.53177317.
Maccari
,
A.
, 1998
, “
A Generalized Hirota Equation in (2 + 1) Dimensions
,” J. Math. Phys.
,
39
(12
), pp. 6547
–6551
.10.1063/1.53266418.
Feng
,
L. Z.
, and
Yan
,
T. X.
, 2010
, “
Modulational Instability and Variable Separation Solution for a Generalized (2 + 1)-Dimensional Hirota Equation
,” Chin. Phys. Lett.
,
27
(030201
), pp. 1
–5
.10.1088/0256-307X/27/3/03020119.
Yang
,
X. L.
, and
Tang
,
J. S.
, 2008
, “
Travelling Wave Solutions for Konopelchenko–Dubrovsky Equation Using an Extended sinh-Gordon Equation Expansion Method
,” Commun. Theor. Phys.
,
50
, pp. 1047
–1051
.10.1088/0253-6102/50/5/0620.
El-Borai
,
M. M.
,
El-Owaidy
,
H. M.
,
Ahmed
,
H. M.
, and
Arnous
,
A. H.
, 2016
, “
Soliton Solutions of Hirota Equation and Hirota-Maccari System
,” New Trends Math. Sci.
,
4
(3
), pp. 231
–238
.10.20852/ntmsci.2019.34821.
Scott
,
A. C.
, 2005
, Encyclopaedia of Nonlinear Science
,
Routledge, Taylor and Francis Group
,
New York
.22.
Rosenau
,
P.
, 2005
, “
What is a Compaction?
,” Not. Am. Math. Soc.
,
52
(7
), pp. 738
–739
.www.ams.org/notices/200507/what-is.pdf23.
Camassa
,
R.
, and
Holm
,
D. D.
, 1993
, “
An Integrable Shallow Water Equation With Peaked Solitons
,” Phys. Rev. Lett.
,
71
(11
), pp. 1661
–1664
.10.1103/PhysRevLett.71.166124.
Baskonus
,
H. M.
,
Bulut
,
H.
, and
Sulaiman
,
T. A.
, 2019
, “
New Complex Hyperbolic Structures to the Lonngren-Wave Equation by Using Sine-Gordon Expansion Method
,” Appl. Math. Nonlinear Sci.
,
4
(1
), pp. 129
–150
.10.2478/AMNS.2019.1.0001325.
Veeresha
,
P.
,
Prakasha
,
D. G.
,
Kumar
,
D.
,
Baleanu
,
D.
, and
Singh
,
J.
, 2020
, “
An Efficient Computational Technique for Fractional Model of Generalized Hirota-Satsuma Coupled KdV and Coupled mKdV Equations
,” ASME J. Comput. Nonlinear Dyn.
,
15
(7
), p. 071003
.10.1115/1.404689826.
SinghKumar
,
J. D.
,
Baleanu
,
D.
, and
Rathore
,
S.
, 2018
, “
An Efficient Numerical Algorithm for the Fractional Drinfeld–Sokolov–Wilson Equation
,” Appl. Math. Comput.
,
335
, pp. 12
–24
.10.1016/j.amc.2018.04.025 27.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
, 2018
, “
Analysis of a Fractional Model of the Ambartsumian Equation
,” Eur. Phys. J. Plus
,
133
, p. 259
.10.1140/epjp/i2018-12081-328.
Yel
,
G.
, 2019
, “
On the New Travelling Wave Solution of a Neural Communication Model
,” BAUN Fen Bil. Enst. Derg.
,
21
(2
), pp. 666
–678
.29.
Goswami
,
A.
,
Singh
,
J.
,
Kumar
.,
D.
, and
Sushila
, 2019
, “
An Efficient Analytical Approach for Fractional Equal Width Equations Describing Hydro-Magnetic Waves in Cold Plasma
,” Phys. A
,
524
(C
), pp. 563
–575
.10.1016/j.physa.2019.04.05830.
Eskitaşçıoğlu
,
E. İ.
,
Aktaş
,
M. B.
, and
Baskonus
,
H. M.
, 2019
, “
New Complex and Hyperbolic Forms for Ablowitz-Kaup-Newell-Segur Wave Equation With Fourth Order
,” Appl. Math. Nonlinear Sci.
,
4
(1
), pp. 93
–112
.10.2478/AMNS.2019.1.0001031.
Asif
,
N. A.
,
Hammouch
,
Z.
,
Riaz
,
M. B.
, and
Bulut
,
H.
, 2018
, “
Analytical Solution of a Maxwell Fluid With Slip Effects in View of the Caputo-Fabrizio Derivative
,” Eur. Phys. J. Plus
,
133
(272
), pp. 1
–13
.10.1140/epjp/i2018-12098-632.
Celik
,
E.
,
Bulut
,
H.
, and
Baskonus
,
H. M.
, 2018
, “
Novel Features of the Nonlinear Model Arising in Nano-Ionic Currents Throughout Microtubules
,” Indian J. Phys.
,
92
(9
), pp. 1137
–1143
.10.1007/s12648-018-1201-933.
Ciancio
,
A.
,
Baskonus
,
H. M.
,
Sulaiman
,
T. A.
, and
Bulut
,
H.
, 2018
, “
New Structural Dynamics of Isolated Waves Via the Coupled Nonlinear Maccari's System With Complex Structure
,” Indian J. Phys.
,
92
(10
), pp. 1281
–1290
.10.1007/s12648-018-1204-634.
Yokus
,
A.
,
Baskonus
,
H. M.
,
Sulaiman
,
T. A.
, and
Bulut
,
H.
, 2018
, “
Numerical Simulation and Solutions of the Two-Component Second Order KdV Evolutionary System
,” Numer. Methods Partial Differential Equations
,
34
(1
), pp. 211
–227
.10.1002/num.2219235.
Cattani
,
C.
, and
Rushchitskii
,
Y. Y.
, 2003
, “
Cubically Nonlinear Elastic Waves: Wave Equations and Methods of Analysis
,” Int. Appl. Mech.
,
39
(10
), pp. 1115
–1145
.10.1023/B:INAM.0000010366.48158.4836.
Amkadni
,
M.
,
Azzouzi
,
A.
, and
Hammouch
,
Z.
, 2008
, “
On the Exact Solutions of Laminar MHD Flow Over a Stretching Flat Plate
,” Commun. Nonlinear Sci. Numer. Simul.
,
13
(2
), pp. 359
–368
.10.1016/j.cnsns.2006.04.00237.
Dusunceli
,
F.
, 2019
, “
New Exponential and Complex Traveling Wave Solutions to the Konopelchenko-Dubrovsky Model
,” Adv. Math. Phys.
,
2019
(7801247
), pp. 1
–9
.10.1155/2019/780124738.
Yel
,
G.
, 2020
, “
New Wave Patterns to the Doubly Dispersive Equation in Nonlinear Dynamic Elasticity
,” Pramana
,
94
(1
), p. 79
.10.1007/s12043-020-1941-x39.
Cattani
,
C.
, and
Ciancio
,
A.
, 2007
, “
Hybrid Two Scales Mathematical Tools for Active Particles Modelling Complex Systems With Learning Hiding Dynamics
,” Math. Models Methods Appl. Sci.
,
17
(2
), pp. 171
–187
.10.1142/S021820250700187540.
Haq
,
R.
,
Ahmed
,
S. F.
, and
Hammouch
,
Z.
, 2018
, “
Heat Transfer Analysis of CuO-Water Enclosed in a Partially Heated Rhombus With Heated Square Obstacle
,” Int. J. Heat Mass Transfer
,
118
, pp. 773
–784
.10.1016/j.ijheatmasstransfer.2017.11.04341.
Sulaiman
,
T. A.
,
Yokus
,
A.
,
Gulluoglu
,
N.
,
Baskonus
,
H. M.
, and
Bulut
,
H.
, 2018
, “
Regarding the Numerical and Stability Analysis of the Sharma-Tosso-Olver Equation
,” ITM Web Conf.
,
22
(01036
), p. 01036
.10.1051/itmconf/2018220103642.
Cattani
,
C.
,
Rushchitsky
,
J. J.
, and
Sinchilo
,
S. V.
, 2005
, “
Physical Constants for One Type of Nonlinearly Elastic Fibrous Micro-and Nanocomposites With Hard and Soft Nonlinearities
,” Int. Appl. Mech.
,
41
(12
), pp. 1368
–1377
.10.1007/s10778-006-0044-943.
Sulaiman
,
T. A.
,
Bulut
,
H.
,
Yokus
,
A.
, and
Baskonus
,
H. M.
, 2019
, “
On the Exact and Numerical Solutions to the Coupled Boussinesq Equation Arising in Ocean Engineering
,” Indian J. Phys.
,
93
(5
), pp. 647
–656
.10.1007/s12648-018-1322-144.
Tekiyeh
,
R. M.
,
Manafian
,
J.
,
Baskonus
,
H. M.
, and
Dusunceli
,
F.
, 2019
, “
Applications of He's Semi-Inverse Variational Method and ITEM to the Nonlinear Long-Short Wave Interaction System
,” Int. J. Adv. Appl. Sci.
,
6
(8
), pp. 53
–64
.10.21833/ijaas.2019.08.00845.
Dusunceli
,
F.
, 2018
, “
Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method
,” MSU J. Sci.
,
6
(1
), pp. 505
–510
.10.18586/msufbd.40321746.
Cattani
,
C.
, and
Rushchitskii
,
Y. Y.
, 2003
, “
Nonlinear Versus Quadratically Nonlinear Elastic Waves: Main Waves Effects
,” Int. Appl. Mech.
,
39
(12
), pp. 1361
–1399
.10.1023/B:INAM.0000020823.49759.c947.
Yokus
,
A.
,
Sulaiman
,
T. A.
,
Gulluoglu
,
M. T.
, and
Bulut
,
H.
, 2018
, “
Stability Analysis, Numerical and Exact Solutions of the (1 + 1)-Dimensional NDMBBM Equation
,” ITM Web Conf.
,
22
, p. 01064
.10.1051/itmconf/2018220106448.
Baskonus
,
H. M.
, 2019
, “
Complex Soliton Solutions to the Gilson-Pickering Model
,” Axioms
,
8
(1
), p. 18
.10.3390/axioms801001849.
Yokus
,
A.
,
Sulaiman
,
T. A.
,
Baskonus
,
H. M.
, and
Atmaca
,
S. P.
, 2018
, “
On the Exact and Numerical Solutions to a Nonlinear Model Arising in Mathematical Biology
,” ITM Web Conf.
,
22
, p. 01061
.10.1051/itmconf/2018220106150.
Cattani
,
C.
,
Sulaiman
,
T. A.
,
Baskonus
,
H. M.
, and
Bulut
,
H.
, 2018
, “
Solitons in an Inhomogeneous Murnaghan's Rod
,” Eur. Phys. J. Plus
,
133
(228
), pp. 1
–12
.10.1140/epjp/i2018-12085-y51.
Cattani
,
C.
,
Sulaiman
,
T. A.
,
Baskonus
,
H. M.
, and
Bulut
,
H.
, 2018
, “
On the Soliton Solutions to the Nizhnik-Novikov-Veselov and the Drinfel'd-Sokolov Systems
,” Opt. Quantum Electron.
,
50
(3
), p. 138
.10.1007/s11082-018-1406-3Copyright © 2021 by ASME
You do not currently have access to this content.