Abstract
The motivation of the study is solving the mathematical problems including time fractional Schrödinger equation by means of a method which is a combination of Chebyshev collocation method and residual power series method (RPSM). The time fractional derivative in local fractional derivative sense is discretized with the help of Chebyshev collocation method to reduce time fractional Schrödinger equation into a system including two fractional ordinary differential equations. At this stage, applying RPSM produces the truncated solution of the mathematical problem. Given examples illustrated that this method is applicable and compatible for solving mathematical problems with fractional derivative.
References
1.
Naber
,
M.
, 2004
, “
Time Fractional Schrödinger Equation
,” J. Math. Phys.
,
45
(8
), pp. 3339
–3352
.10.1063/1.17696112.
Wang
,
S.
, and
Xu
,
M.
, 2007
, “
Generalized Fractional Schrödinger Equation With Spacetime Fractional Derivatives
,” J. Math. Phys.
,
48
(4
), p. 043502
.10.1063/1.27162033.
Ionescu
,
A. D.
, and
Pusateri
,
F.
, 2014
, “
Generalized Fractional Schrödinger Equations in One Dimension
,” J. Funct. Anal.
,
266
(1
), pp. 139
–176
.10.1016/j.jfa.2013.08.0274.
Hu
,
J.
,
Xin
,
J.
, and
Lu
,
H.
, 2011
, “
The Global Solution for a Class of Systems of Fractional Nonlinear Schrödinger Equations With Periodic Boundary Condition
,” Comput. Math. Appl.
,
62
(3
), pp. 1510
–1521
.10.1016/j.camwa.2011.05.0395.
Owolabi
,
K. M.
, and
Atangana
,
A.
, 2016
, “
Numerical Solution of Fractional-in-Space Nonlinear Schrödinger Equation With the Riesz Fractional Derivative
,” Eur. Phys. J. Plus
,
131
(9
), p. 335
.10.1140/epjp/i2016-16335-86.
Bhrawy
,
A. H.
, and
Abdelkawy
,
M. A.
, 2015
, “
A Fully Spectral Collocation Approximation for Multi-Dimensional Fractional Schrödinger Equations
,” J. Comput. Phys.
,
294
, pp. 462
–483
.10.1016/j.jcp.2015.03.0637.
Khader
,
M. M.
, and
Saad
,
K. M.
, 2018
, “
A Numerical Approach for Solving the Fractional Fisher Equation Using Chebyshev Spectral Collocation Method
,” Chaos Solitons Fractals
,
110
, pp. 169
–177
.10.1016/j.chaos.2018.03.0188.
Khader
,
M. M.
, and
Saad
,
K. M.
, 2018
, “
A Numerical Study by Using the Chebyshev Collocation Method for a Problem of Biological Invasion: Fractional Fisher Equation
,” Int. J. Biomath.
,
11
(8
), p. 1850099
.10.1142/S17935245185009979.
Jumarie
,
G.
, 2009
, “
Laplace's Transform of Fractional Order Via the Mittag-Leffler Functionand Modified Riemann-Liouville Derivative
,” Appl. Math. Lett.
,
22
(11
), pp. 1659
–1664
.10.1016/j.aml.2009.05.01110.
Yang
,
X.
,
Kang
,
Z.
, and
Liu
,
C.
, 2010
, “
Local Fractional Fouriers Transform Based on the Local Fractional Calculus
,” International Conference on Electrical and Control Engineering
, Wuhan, China, June 25–27,
IEEE Computer Society
, pp. 1242
–1245
.10.1109/iCECE.2010.141611.
Kolwankar
,
K. M.
, and
Gangal
,
A. D.
, 1998
, “
Local Fractional FokkerPlanck Equation
,” Phys. Rev. Lett.
,
80
(2
), pp. 214
–217
.10.1103/PhysRevLett.80.21412.
Adda
,
F. B.
, and
Cresson
,
J.
, 2001
, “
About Non-Differentiable Functions
,” J. Math. Anal. Appl.
,
263
(2
), pp. 721
–737
.10.1006/jmaa.2001.765613.
Kolwankar
,
K. M.
, and
Gangal
,
A. D.
, 1996
, “
Fractional Differentiability of Nowhere Differentiable Functions and Dimensions
,” Chaos
,
6
(4
), pp. 505
–513
.10.1063/1.16619714.
Yang
,
X.
, 2011
, “
Local Fractional Laplaces Transform Based on the Local Fractional Calculus
,” Proceedings of the International Conference on Computer Science and Information Engineering
, Zhengzhou, China,
Springer
, Berlin, pp. 391
–397
.10.1007/978-3-642-21411-0_6415.
Yang, X. J., Srivastava, H. M., Torres, D. F., and Zhang, Y.,
2017
, “
Non-Differentiable Solutions for Local Fractional Nonlinear Riccati Differential Equations
,” Fundam. Inform.
,
151
, pp. 409
–417
.10.3233/FI-2017-150016.
Babakhani
,
A.
, and
Gejji
,
V. D.
, 2002
, “
On Calculus of Local Fractional Derivatives
,” J. Math. Anal. Appl.
,
270
(1
), pp. 66
–79
.10.1016/S0022-247X(02)00048-317.
Chen
,
Y.
,
Yan
,
Y.
, and
Zhang
,
K.
, 2010
, “
On the Local Fractional Derivative
,” J. Math. Anal. Appl.
,
362
(1
), pp. 17
–33
.10.1016/j.jmaa.2009.08.01418.
Yang
,
X. J.
, 2011
, Local Fractional Functional Analysis and Its Applications
,
Asian Academic
,
Hong Kong
, p. 33
.19.
Yang
,
X. J.
, 2012
, Advanced Local Fractional Calculus and Its Applications
,
World Science
,
New York
, p. 34
.20.
Yang
,
X. J.
,
Baleanu
,
D.
, and
Srivastava
,
H. M.
, 2015
, “
Local Fractional Similarity Solution for the Diusion Equation Dened on Cantor Sets
,” Appl. Math. Lett.
,
47
, pp. 54
–60
.10.1016/j.aml.2015.02.02421.
Yang
,
X.
,
Baleanu
,
J. D.
, and
Srivastava
,
H. M.
, 2015
, Local Fractional Integral Transforms and Their Applications
,
Academic Press
,
New York
.22.
Yang
,
X. J.
,
Srivastava
,
H. M.
,
He
,
J. H.
, and
Baleanu
,
D.
, 2013
, “
Cantor-Type Cylindricalcoordinate Method for Dierential Equations With Local Fractional Derivatives
,” Phys. Lett. A
,
377
(28–30
), pp. 1696
–1700
.10.1016/j.physleta.2013.04.01223.
Zhang
,
Y.
,
Srivastava
,
H. M.
, and
Baleanu
,
M. C.
, 2015
, “
Local Fractional Variational Iteration Algorithm II for Non-Homogeneous Model Associated With the Non-Differentiable Heat Flow
,” Adv. Mech. Eng.
,
7
(10
), pp. 1
–5
.10.1177/168781401560856724.
Carpinteri
,
A.
,
Chiaia
,
B.
, and
Cornetti
,
P.
, 2001
, “
Static-Kinematic Duality and the Principle of Virtual Work in the Mechanics of Fractal Media
,” Comput. Methods Appl. Mech. Eng.
,
191
(1–2
), pp. 3
–11
.10.1016/S0045-7825(01)00241-925.
Bayrak
,
M. A.
,
Demir
,
A.
, and
Ozbilge
,
E.
, 2020
, “
Numerical Solution of Fractional Diffusion Equation by Chebyshev Collocation Method and Residual Power Series Method
,” Alexandria Eng. J
,
59
(6
), pp. 4709
–4717
.10.1016/j.aej.2020.08.033Copyright © 2021 by ASME
You do not currently have access to this content.