Abstract
The tracking control of underactuated systems is a challenging problem due to the structural differences compared to fully actuated systems. Contrarily to fully actuated systems, resolving the inverse kinematics problem of underactuated systems is not possible independently from the dynamic equations. Instead, the inverse dynamics must be addressed. It is common to extend the computed torque control (CTC) technique with servoconstraints. Besides the CTC's clearness, the stability of the system cannot be always guaranteed. A novel predictive controller (PC) is presented in this paper. Our PC applies the variational principle to design the motion of the system in order to achieve a stable motion with the lowest possible tracking error. To demonstrate the applicability and the performance of the PC method, a numerical study is presented for a planar manipulator resulting in about 20% RMS error compared to the CTC method from the literature.