Abstract

Labyrinth seals are widely used to prevent fluid leakage in high-low pressure areas of the rotating machinery. However, the rub-impact fault easily occurs in labyrinth seals. Considering the influence of gyroscopic effect, a finite element model of seal-rubbing rotor system is established in this study based on the Muszynska seal force model, the rolling bearing force model, and the nonlinear rubbing force model. The vibration characteristics under the coupling faults of airflow excitation and rub-impact are analyzed. First, the response of the system without rub-impact fault is simulated numerically and verified by experiments. Subsequently, the dynamic characteristics of the rotor under the conditions of slight and severe rub-impact faults are analyzed. Finally, the influence of the rub-impact parameters is further studied. The results indicate that when the rub-impact fault is absent, airflow excitation occurs at a certain speed, which exhibits the characteristics of frequency locking and combination frequency. The coupling dynamic responses of airflow-induced vibration and rub-impact fault show a rich spectrum of nonlinear phenomena, which are closely related to the degree of rub impact. This study may provide a theoretical basis for the detection and diagnosis of fluid-induced rub-impact fault in labyrinth seal-rotor systems.

References

1.
Muszynska
,
A.
,
1989
, “
Rotor-to-Stationary Element Rub-Related Vibration Phenomena in Rotating Machinery-Literature Survey
,”
Shock Vib. Dig.
,
21
(
3
), pp.
3
11
.10.1177/058310248902100303
2.
Thomas
,
H. J.
,
1958
, “
Unstable Oscillations of Turbine Rotors Due to Steam Leakage in the Clearance of the Sealing Glands and the Buckets
,”
Bull. Sci. A. J. M.
,
71
, pp.
1039
1063
.https://www.researchgate.net/publication/260310078_Unstable_Oscillations_of_Turbine_Rotors_Due_to_Steam_Leakage_in_the_Clearance_of_the_Sealing_Glands_and_the_Buckets
3.
Alford
,
J. S.
,
1965
, “
Protecting Turbomachinery From Self-Excited Rotor Whirl
,”
ASME J. Eng. Power
,
87
(
4
), pp.
333
343
.10.1115/1.3678270
4.
Muszynska
,
A.
, and
Bently
,
D. E.
,
1990
, “
Frequency-Swept Rotating in Put Perturbation Techniques and Identification of the Fluid Force Models in Rotor/Bearing/Seal Systems and Fluid Handling Machines
,”
J. Sound Vib.
,
143
(
1
), pp.
103
124
.10.1016/0022-460X(90)90571-G
5.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seals Based on Hirs' Lubrication Equation
,”
ASME J. Lubr. Tech.
,
105
(
3
), pp.
429
436
.10.1115/1.3254633
6.
Wang
,
W. Z.
,
Liu
,
Y. Z.
, and
Jiang
,
P. N.
,
2015
, “
Numerical Investigation on Influence of Real Gas Properties on Nonlinear Behavior of Labyrinth Seal-Rotor System
,”
Appl. Math. Comput.
,
263
, pp.
12
24
.10.1115/1.4051185
7.
Ma
,
W. S.
,
Huang
,
H.
,
Feng
,
G. Q.
,
Chen
,
Z. B.
, and
Kirk
,
R. G.
,
2015
, “
Labyrinth Seals Diameter and Length Effect Study on Nonlinear Dynamics
,”
Procedia Eng.
,
99
, pp.
1358
1364
.10.1016/j.proeng.2014.12.670
8.
Ma
,
H.
,
Li
,
H.
,
Niu
,
H. Q.
,
Song
,
R. Z.
, and
Wen
,
B. C.
,
2013
, “
Nonlinear Dynamic Analysis of a Rotor-Bearing-Seal System Under Two Loading Conditions
,”
J. Sound Vib.
,
332
(
23
), pp.
6128
6154
.10.1016/j.jsv.2013.05.014
9.
Zhang
,
E. J.
,
Jiao
,
Y. H.
, and
Chen
,
Z. B.
,
2018
, “
Dynamic Behavior Analysis of a Rotor System Based on a Nonlinear Labyrinth-Seal Forces Model
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
10
), p.
101002
.10.1115/1.4040709
10.
Zhang
,
E. J.
,
Jiao
,
Y. H.
, and
Chen
,
Z. B.
,
2019
, “
Effect of Radial Growth on Rotordynamic Characteristics of Labyrinth Seal-Rotor System
,”
J. Aerosp. Eng.
,
32
(
4
), p.
04019043
.10.1061/(ASCE)AS.1943-5525.0001010
11.
Luo
,
Y. G.
,
Zhang
,
S. H.
,
Wu
,
B.
, and
Wang
,
W. L.
,
2014
, “
Dynamic Analysis on Nonlinear Fluid-Structure Interaction Forces of Rub-Impact Rotor System
,”
Open Mech. Eng. J.
,
8
(
1
), pp.
480
486
.10.2174/1874155X01408010480
12.
Li
,
S. T.
,
Xu
,
Q. Y.
, and
Zhang
,
X. L.
,
2007
, “
Nonlinear Dynamic Behaviors of a Rotor-Labyrinth Seal System
,”
Nonlinear Dyn.
,
47
(
4
), pp.
321
329
.10.1007/s11071-006-9025-0
13.
Li
,
W.
,
Yang
,
Y.
,
Sheng
,
D. R.
, and
Chen
,
J. H.
,
2011
, “
A Novel Nonlinear Model of Rotor/Bearing/Seal System and Numerical Analysis
,”
Mech. Mach. Theory
,
46
(
5
), pp.
618
631
.10.1016/j.mechmachtheory.2011.01.002
14.
Wyssmann
,
H. R.
,
Pham
,
T. C.
, and
Jenny
,
R. J.
,
1984
, “
Prediction of Stiffness and Damping Coefficients for Centrifugal Compressor Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
920
926
.10.1115/1.3239659
15.
Scharrer
,
J. K.
,
1988
, “
Theory Versus Experiment for the Rotordynamic Coefficients of Labyrinth Gas Seals: Part I-a Two Control Volume Model
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
3
), pp.
270
280
.10.1115/1.3269513
16.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1988
, “
Theory Versus Experiment for the Rotordynamic Coefficient of Labyrinth Gas Seals: Part II-a Comparison to Experiment
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
3
), pp.
281
287
.10.1115/1.3269514
17.
Kirk
,
R. G.
, and
Guo
,
Z.
,
2009
, “
Influence of Leak Path Friction on Labyrinth Seal Inlet Swirl
,”
Tribol. Soc. Tribol. Lubr. Eng.
,
52
(
2
), pp.
139
145
.10.1080/10402000802105430
18.
Hirano
,
T.
,
Guo
,
Z.
, and
Kirk
,
R. G.
,
2005
, “
Application of Computational Fluid Dynamics Analysis for Rotating Machinery: Part II- Labyrinth Seal Analysis
,”
Trans. ASME
,
127
(
4
), pp.
820
826
.10.1115/1.1808426
19.
Subramanian
,
S.
,
Sekhar
,
A. S.
, and
Prasad
,
B. V. S. S. S.
,
2016
, “
Rotordynamic Characteristics of Rotating Labyrinth Gas Turbine Seal With Centrifugal Growth
,”
Tribol. Int.
,
97
, pp.
349
359
.10.1016/j.triboint.2016.01.003
20.
Wang
,
Q. F.
, and
He
,
L. D.
,
2019
, “
Effects of Four Types of Pre-Swirls on the Leakage, Flow Field, and Fluid-Induced Force of the Rotary Straight-Through Labyrinth Gas Seal
,”
Chin. J. Mech. Eng.
,
32
(
1
), p.
56
.10.1186/s10033-019-0370-6
21.
Cangioli
,
F.
,
Pennacchi
,
P.
,
Nettis
,
L.
, and
Ciuchicchi
,
L.
,
2018
, “
Design and Analysis of CFD Experiments for the Development of Bulk-Flow Model for Staggered Labyrinth Seal
,”
Int. J. Rotating Mach.
,
2018
(
11
), pp.
1
16
.10.1155/2018/9357249
22.
Yang
,
S. P.
,
Tan
,
B.
, and
Deng
,
X. F.
,
2019
, “
Numerical and Experimental Investigation of the Sealing Effect of a Specific Labyrinth Seal Structure
,”
Math. Probl. Eng.
,
2019
(
4
), pp.
1
14
.10.1155/2019/9851314
23.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Bahar
,
A. S.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032503
.10.1115/1.4031369
24.
Yan
,
X.
,
Dai
,
X. B.
,
Zhang
,
K.
,
Li
,
J.
, and
He
,
K.
,
2018
, “
Effect of Teeth Bending and Mushrooming Damages on Leakage Performance of a Labyrinth Seal
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
4697
4709
.10.1007/s12206-018-0917-y
25.
Subramanian
,
S.
,
Sekhar
,
A. S.
, and
Prasad
,
B. V. S. S. S.
,
2017
, “
Rotordynamic Characterization of Rotating Labyrinth Gas Turbine Seals With Radial Growth: Combined Centrifugal and Thermal Effects
,”
Int. J. Mech. Sci.
,
123
, pp.
1
19
.10.1016/j.ijmecsci.2017.01.033
26.
Jia
,
X. Y.
,
Zheng
,
Q.
,
Jiang
,
Y. T.
, and
Zhang
,
H.
,
2019
, “
Leakage and Rotordynamic Performance of T Type Labyrinth Seal
,”
Aerosp. Sci. Technol.
,
88
, pp.
22
31
.10.1016/j.ast.2019.02.043
27.
Cangioli
,
F.
,
Chatterton
,
S.
,
Pennacchi
,
P.
,
Nettis
,
L.
, and
Ciuchicchi
,
L.
,
2018
, “
Thermo-Elasto Bulk-Flow Model for Labyrinth Seals in Steam Turbines
,”
Tribol. Int.
,
119
, pp.
359
371
.10.1016/j.triboint.2017.11.016
28.
Cangioli
,
F.
,
Pennacchi
,
P.
,
Vannini
,
G.
, and
Ciuchicchi
,
L.
,
2018
, “
Effect of Energy Equation in One Control-Volume Bulk-Flow Model for the Prediction of Labyrinth Seal Dynamic Coefficients
,”
Mech. Syst. Signal Process.
,
98
, pp.
594
612
.10.1016/j.ymssp.2017.05.017
29.
Saber
,
E.
, and
Abdou
,
K. M.
,
2019
, “
Effect of Lateral Misalignment on Performance of a Stationary and Rotating Labyrinth Seals
,”
Alexandria Eng. J.
,
58
(
1
), pp.
27
38
.10.1016/j.aej.2019.03.002
30.
Shyu
,
S. H.
, and
Chen
,
Y. W.
,
2017
, “
Dynamic Characteristics of Rotor-Bearing System With a Labyrinth Seal
,”
Key Eng. Mater.
,
739
, pp.
169
181
.10.4028/www.scientific.net/KEM.739.169
31.
Dolan
,
F. X.
,
Kennedy
,
F. E.
, and
Schulson
,
E. M.
,
1985
, “
An Experimental Investigation of Rubbing Interaction in Labyrinth Seals at Cryogenic Temperature
,”
Wear
,
102
(
1–2
), pp.
51
66
.10.1016/0043-1648(85)90091-2
32.
Frączek
,
D.
,
Wróblewski
,
W.
, and
Bochon
,
K.
,
2017
, “
Influence of Honeycomb Rubbing on the Labyrinth Seal Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012502
.10.1115/1.4034183
33.
Delebarre
,
C.
,
Wagner
,
V.
,
Paris
,
J. Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Gurt-Santanach
,
J.
,
2017
, “
Tribological Characterization of a Labyrinth-Abradable Interaction in a Turbo Engine Application
,”
Wear
,
370–371
, pp.
29
38
.10.1016/j.wear.2016.11.007
34.
Zhang
,
N.
,
Xuan
,
H. J.
,
Guo
,
X. J.
,
Guan
,
C. P.
, and
Hong
,
W. R.
,
2016
, “
Investigation of High-Speed Rubbing Behavior of Labyrinth-Honeycomb Seal for Turbine Engine Application
,”
J. Zhejiang Univ. Sci. A (Appl. Phys. Eng.)
,
17
(
12
), pp.
947
960
.10.1631/jzus.A1600367
35.
Fischer
,
T.
,
Welzenbach
,
S.
,
Meier
,
F.
,
Werner
,
E.
,
Kyzy
,
S. U.
, and
Munz
,
O.
,
2018
, “
Modeling the Rubbing Contact in Honeycomb Seals
,”
Continuum Mech. Thermodyn.
,
30
(
2
), pp.
381
395
.10.1007/s00161-017-0608-4
36.
Munz
,
O.
,
Schwitzke
,
C.
,
Bauer
,
H.
,
Welzenbach
,
S.
,
Fischer
,
T.
, and
Kyzy
,
S. U.
,
2018
, “
Modelling the Rubbing Process in Labyrinth Seals
,”
Proceedings of the GPPS Forum 18
, Zurich, Switzerland, Jan. 10–12, Paper No. GPPS-2018-0038.
37.
Munz
,
O.
,
Pychynski
,
T.
,
Schwitzke
,
C.
, and
Bauer
,
H. J.
,
2018
, “
Continued Experimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator: Slanted Position
,”
Aerospace
,
5
(
3
), p.
82
.10.3390/aerospace5030082
38.
Pychynski
,
T.
,
Höfler
,
C.
, and
Bauer
,
H.-J.
,
2016
, “
Experimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062501
.10.1115/1.4031791
39.
Ma
,
H.
,
Wen
,
B. C.
,
Tai
,
X. Y.
, and
Han
,
Q. K.
,
2017
,
Dynamics of Rotating Blade-Casing Systems With Rubbing
,
The Science Publishing Company
,
Beijing, China
, pp.
44
47
.
40.
Cui
,
L. L.
,
Zhang
,
Y.
,
Zhang
,
F. B.
,
Zhang
,
J. Y.
, and
Lee
,
S.
,
2016
, “
Vibration Response Mechanism of Faulty Outer Race Rolling Element Bearings for Quantitative Analysis
,”
J. Sound Vib.
,
364
, pp.
67
76
.10.1016/j.jsv.2015.10.015
41.
Li
,
B. Q.
,
Ma
,
H.
,
Zeng
,
J.
,
Guo
,
X. M.
, and
Wen
,
B. C.
,
2018
, “
Rotating Blade-Casing Rubbing Simulation Considering Casing Flexibility
,”
Int. J. Mech. Sci.
,
148
, pp.
118
134
.10.1016/j.ijmecsci.2018.08.019
42.
Guo
,
X. M.
,
Zeng
,
J.
,
Ma
,
H.
,
Zhao
,
C. G.
,
Yu
,
X.
, and
Wen
,
B. C.
,
2020
, “
A Dynamic Model for Simulating Rubbing Between Blade and Flexible Casing
,”
J. Sound Vib.
,
466
, p.
115036
.10.1016/j.jsv.2019.115036
You do not currently have access to this content.