Abstract

It is common practice within multi-body dynamic (MBD) modeling to assume that individual bodies are rigid however this can be an oversimplification especially when slender bodies are present resulting in inaccurate estimations of the system's natural frequencies and overall behavior. To address this shortfall, we extend the Udwadia–Kalaba (U–K) MBD formulation in this paper to model flexible multibody systems for purposes of exploring system natural frequencies. To model the flexibility, a lumped parameter approach is proposed, which in this work idealizes a flexible beam as a series of discrete rigid elements connected by torsional springs. In the U–K formulation, a mechanical system can also be discretized into rigid elements and adapted. This is viewed as a benefit for incorporating a lumped parameter approach within the U–K formulation to model flexible multibody systems. A flexible crank-slider mechanism is introduced and modeled within the Udwadia–Kalaba formulation to capture the dynamics of flexibility through linkage compliance. The model is validated against an alternatively formulated MBD model and system natural frequencies and mode shapes numerically predicted. Results of the study show the effectiveness and potential of extending the application of the Udwadia–Kalaba formulation by using a lumped parameter approach to dynamically model flexible multibody systems.

References

1.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley Ltd
.,
Sussex
.
2.
Adams
,
2021
, “
The Multibody Dynamics Simulation Solution
,” Adams, accessed Mar. 10,
2021
, https://www.mscsoftware.com/product/adams
3.
DymoreSolutions
, 2021, “DymoreSolutions,” DymoreSolutions, College Park, MD, accessed Mar. 10,
2021
, http://www.dymoresolutions.com
4.
ANSYS
, 2021, “
Engineering Simulation Software
,” ANSYS, accessed Oct. 26, 2022, https://www.ansys.com/en-gb
5.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1996
,
Analytical Dynamics a New Approach
,
Cambridge University Press
,
Cambridge, UK
.
6.
Nielsen
,
M. C.
,
Eidsvik
,
O. A.
,
Blanke
,
M.
, and
Schjølberg
,
I.
,
2016
, “
Validation of Multi-Body Modelling Methodology for Reconfigurable Underwater Robots
,”
OCEANS 2016 MTS/IEEE Monterey Conference
,
IEEE
, Monterey, CA, Sept.
19
23
.
7.
Li
,
C.
,
Zhao
,
H.
,
Zhen
,
S.
,
Sun
,
H.
, and
Shao
,
K.
,
2018
, “
Udwadia Kalaba Theory for the Control of Bulldozer Link Lever
,”
Adv. Mech. Eng.
,
10
(
6
), pp.
1
15
.10.1177/1687814018779728
8.
Xu
,
Y.
, and
Liu
,
R.
,
2017
, “
Dynamic Modeling of SCARA Robot Based on Udwadia-Kalaba Theory
,”
Adv. Mech. Eng.
,
9
(
10
), pp.
1
12
.10.1177/1687814017728450
9.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2007
, “
Explicit Poincaré Equations of Motion for General Constrained Systems. Part I. Analytical Results
,”
Proc. R. Soc. A
, 463(2082), pp.
1421
1434
.10.1098/rspa.2007.1825
10.
Udwadia
,
F. E.
, and
Kalaba
,
R. R.
,
2001
, “
Explicit Equations of Motion for Mechanical Systems With Nonideal Constraints
,”
ASME J. Appl. Mech.
,
68
(
4
), p.
689
.10.1115/1.1382602
11.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2006
, “
Explicit Equations of Motion for Constrained Mechanical Systems With Singular Mass Matrices and Applications to Multi-Body Dynamics
,”
Proc. R. Soc. A
,
462
(
2071
), pp.
2097
2117
.10.1098/rspa.2006.1662
12.
Udwadia
,
F. E.
, and
Schutte
,
A. D.
,
2010
, “
Equations of Motion for General Constrained Systems in Lagrangian Mechanics
,”
Acta Mech., Springer Verlag
,
213
(
1–2
), pp.
111
129
.10.1007/s00707-009-0272-2
13.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
, New York.
14.
Yap
,
E. J. H.
,
Rezgui
,
D.
,
Lowenberg
,
M. H.
,
Neild
,
S. A.
, and
Rahman
,
K.
,
2019
, “
Resonant Frequency Tuning of a Nonlinear Helicopter Inceptor Model: A Sensitivity Analysis
,”
Proceedings of the 45th European Rotorcraft Forum
,
Warsaw, Poland
, Sept. 17–20, pp.
1
14
.https://www.researchgate.net/publication/348578668_Resonant_Frequency_Tuning_Of_A_Nonlinear_Helicopter_Inceptor_Model_A_Sensitivity_Analysis
15.
Simscape, MathWorks,
2021, “
Simscape
,” MathWorks Version, accessed Mar. 10, 2021, https://uk.mathworks.com/products/simscape.html
16.
Antunes
,
J.
, and
Debut
,
V.
,
2016
, “
Development of a Modal Udwadia-Kalaba Formulation for Guitar Modelling
,”
International Symposium on Musical and Room Acoustics
, La Plata, Argentina, Sept.
11
13
.http://ica2016.org.ar/ismra2016proceedings/ismra2016/ISMRA2016-82.pdf
17.
Antunes
,
J.
, and
Debut
,
V.
,
2017
, “
Dynamical Computation of Constrained Flexible Systems Using a Modal Udwadia-Kalaba Formulation: Application to Musical Instruments
,”
J. Acoust. Soc. Am.
,
141
(
2
), pp.
764
778
.10.1121/1.4973534
18.
Antunes
,
J.
,
Debut
,
V.
,
Borsoi
,
L.
,
Delaune
,
X.
, and
Piteau
,
P.
,
2017
, “
A Modal Udwadia-Kalaba Formulation for Vibro-Impact Modelling of Continuous Flexible Systems With Intermittent Contacts
,”
X International Conference on Structural Dynamics, EURODYN
, Rome, Italy, Sept.
10
13
.10.1016/j.proeng.2017.09.058
19.
Gutiérrez
,
J. L. R.
, and
Heidecker
,
A.
,
2020
, “
Nonlinear Controller Design for a Flexible Spacecraft
,”
J. Astronaut. Sci.
,
67
(
4
), pp.
1500
1520
.10.1007/s40295-020-00234-z
20.
Pennestri
,
E.
,
Valentini
,
P. P.
, and
de Falco
,
D.
,
2010
, “
An Application of the Udwadia-Kalaba Dynamic Formulation to Flexible Multibody Systems
,”
J. Franklin Inst.
,
347
(
1
), pp.
173
194
.10.1016/j.jfranklin.2009.10.014
21.
Géradin
,
M.
, and
Cardona
,
A.
, 2001, Flexible Multibody
Dynamics: A Finite Element Approach
,
Wiley
, Hoboken, NJ.
22.
Yap
,
E. J. H.
,
Rezgui
,
D.
,
Lowenberg
,
M. H.
,
Neild
,
S. A.
, and
Rahman
,
K.
,
2021
,
Towards Development of a Nonlinear and Flexible Multi-Body Helicopter Inceptor Model: A Resonant Frequency Tuning Study
,
American Institute of Aeronautics and Astronautics
, Reston, VA, pp.
1
23
.
23.
Patran
, 2021, “
Complete FEA Modeling Solution
,” Patran, accessed Mar. 10, 2021, https://www.mscsoftware.com/product/patran
24.
Neild
,
S. A.
,
McFadden
,
P. D.
, and
Williams
,
M. S.
,
2001
, “
A Discrete Model of a Vibrating Beam Using a Time-Stepping Approach
,”
J. Sound Vib.
,
239
(
1
), pp.
99
121
.10.1006/jsvi.2000.3158
25.
MathWorks
, 2021, Moore-Penrose pseudoinverse, MathWorks, accessed Mar. 10,
2021
, https://www.mathworks.com/help/matlab/ref/pinv.html
26.
Simscape
, MathWorks, 2021, “
How Simscape Simulation Works
,” MathWorks, accessed May 25,
2021
, https://www.mathworks.com/help/physmod/simscape/ug/how-simscape-simulation-works.html
You do not currently have access to this content.