Abstract

A twice harmonic balance (THB) method is proposed to compute and analyze quasi-periodic (QP) responses of nonlinear dynamical systems, with emphasis on the stability and bifurcation of QP responses. In the first harmonic balancing, the original system is transformed into a truncated system via harmonic balance method with variable-coefficients. The truncated system is further solved via the second harmonic balancing, more specifically the incremental harmonic balance (IHB) method. The equivalence is addressed between the periodic solutions of the truncated system and the QP responses of the original system. According to the relationship, the presented method is in essence to convert the problem of solving the original system for QP responses into a truncated system for periodic solutions. Numerical examples show that the semi-analytical QP solutions obtained by the THB method are in well consistence with the solutions obtained by the Runge–Kutta (RK) method and the IHB method with two time scales, respectively. More importantly, the stability of the attained QP solutions can be analyzed by just applying the Floquet theory to the periodic response of the truncated system. The continuation of the QP responses is generated by the presented method, on which the possible bifurcations resulted from the stability reversal are analyzed in detail. In addition, the evolution of QP responses can also be tracked from periodic solutions, such as that due to the onset of a Neimark–Sacker bifurcation.

References

1.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2010
, “
Homotopy Analysis Method for Limit Cycle Oscillations of an Airfoil With Cubic Nonlinearities
,”
J. Vib. Control
,
16
(
2
), pp.
163
179
.10.1177/1077546308097268
2.
Al-Shudeifat
,
M. A.
, and
Saeed
,
A. S.
,
2022
, “
Periodic Motion and Frequency Energy Plots of Dynamical Systems Coupled With Piecewise Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
4
), p.
041005
.10.1115/1.4053509
3.
Breunung
,
T.
, and
Haller
,
G.
,
2019
, “
When Does a Periodic Response Exist in a Periodically Forced Multi-Degree of-Freedom Mechanical System
,”
Nonlinear Dyn.
,
98
(
3
), pp.
1761
1780
.10.1007/s11071-019-05284-z
4.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2017
, “
A New Incremental Harmonic Balance Method With Two Time Scales for Quasiperiodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation
,”
ASME J. Vib. Acoust.
,
139
(
2
), p. 021010.10.1115/1.4035135
5.
Sharma
,
A.
,
2021
, “
Approximate Lyapunov–Perron Transformations: Computation and Applications to Quasiperiodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
5
), p. 051005.10.1115/1.4050614
6.
Zhou
,
X.
, and
Li
,
X. M.
,
2020
, “
Quasi-Periodic Oscillations in the System of Three Coupled Van Der Pol Oscillators
,”
Int. J. Non-Linear Mech.
,
119
, p.
103368
.10.1016/j.ijnonlinmec.2019.103368
7.
Jing
,
Z. J.
,
Yang
,
Z. Y.
, and
Jiang
,
T.
,
2006
, “
Complex Dynamics in Duffing–Van Der Pol Equation
,”
Chaos, Solitons Fractals
,
27
(
3
), pp.
722
747
.10.1016/j.chaos.2005.04.044
8.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2017
, “
An Incremental Harmonic Balance Method With Two Timescales for Quasiperiodic Motion of Nonlinear Systems Whose Spectrum Contains Uniformly Spaced Sideband Frequencies
,”
Nonlinear Dyn.
,
90
(
2
), pp.
1015
1033
.10.1007/s11071-017-3708-6
9.
Huang
,
W. T.
,
Cao
,
C. C.
, and
He
,
D. P.
,
2021
, “
Quasi-Periodic Motion and Hopf Bifurcation of a Two-Dimensional Aeroelastic Airfoil System in Supersonic Flow
,”
Int. J. Bifurcation Chaos
,
31
(
02
), p.
2150018
.10.1142/S0218127421500188
10.
Huang
,
J. L.
,
Wang
,
T.
, and
Zhu
,
W. D.
,
2021
, “
An Incremental Harmonic Balance Method With Two Time-Scales for Quasi-Periodic Responses of a Van Der Pol-Mathieu Equation
,”
Int. J. Non-Linear Mech.
,
135
, p.
103767
.10.1016/j.ijnonlinmec.2021.103767
11.
Belhaq
,
M.
,
Ghouli
,
Z.
, and
Hamdi
,
M.
,
2018
, “
Energy Harvesting in a Mathieu–Van Der Pol–Duffing Mems Device Using Time Delay
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2537
2546
.10.1007/s11071-018-4508-3
12.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
18
38
.10.1016/j.cma.2015.07.017
13.
Sarrouy
,
E.
, and
Sinou
,
J.-J.
,
2011
, “
Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems-on the Use of the Harmonic Balance Methods
,”
Adv. Vib. Anal. Res.
,
21
, pp.
419
34
.10.5772/15638
14.
Suarez
,
A.
,
Fernandez
,
E.
,
Ramirez
,
F.
, and
Sancho
,
S.
,
2012
, “
Stability and Bifurcation Analysis of Self-Oscillating Quasi-Periodic Regimes
,”
IEEE Trans. Microwave Theory Tech.
,
60
(
3
), pp.
528
541
.10.1109/TMTT.2012.2184129
15.
Candon
,
M.
,
Carrese
,
R.
,
Ogawa
,
H.
,
Marzocca
,
P.
,
Mouser
,
C.
,
Levinski
,
O.
, and
Silva
,
W. A.
,
2019
, “
Characterization of a 3dof Aeroelastic System With Freeplay and Aerodynamic Nonlinearities–Part I: Higher-Order Spectra
,”
Mech. Syst. Signal Process.
,
118
, pp.
781
807
.10.1016/j.ymssp.2018.05.053
16.
Prince
,
P. J.
, and
Dormand
,
J. R.
,
1981
, “
High Order Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
,
7
(
1
), pp.
67
75
.10.1016/0771-050X(81)90010-3
17.
Murillo
,
J. Q.
, and
Yuste
,
S. B.
,
2011
, “
An Explicit Difference Method for Solving Fractional Diffusion and Diffusion wave Equations in the Caputo Form
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021014
.10.1115/1.4002687
18.
Cui
,
C. C.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2015
, “
Simulating Nonlinear Aeroelastic Responses of an Airfoil With Freeplay Based on Precise Integration Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
933
942
.10.1016/j.cnsns.2014.08.002
19.
Shen
,
Y. J.
,
Wen
,
S. F.
,
Li
,
X. H.
,
Yang
,
S. P.
, and
Xing
,
H. J.
,
2016
, “
Dynamical Analysis of Fractional-Order Nonlinear Oscillator by Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1457
1467
.10.1007/s11071-016-2771-8
20.
Shukla
,
A. K.
,
Ramamohan
,
T.
, and
Srinivas
,
S.
,
2014
, “
A New Analytical Approach for Limit Cycles and Quasi-Periodic Solutions of Nonlinear Oscillators: The Example of the Forced Van Der Pol Duffing Oscillator
,”
Phys. Scr.
,
89
(
7
), p.
075202
.10.1088/0031-8949/89/7/075202
21.
Fontanela
,
F.
,
Grolet
,
A.
,
Salles
,
L.
, and
Hoffmann
,
N.
,
2019
, “
Computation of Quasi-Periodic Localised Vibrations in Nonlinear Cyclic and Symmetric Structures Using Harmonic Balance Methods
,”
J. Sound Vib.
,
438
, pp.
54
65
.10.1016/j.jsv.2018.09.002
22.
Liu
,
G.
,
Liu
,
J. K.
,
Wang, L.
, and
Lu
,
Z. R.
,
2021
, “
A New Semi-Analytical Approach for Quasi-Periodic Vibrations of Nonlinear Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
103
, p.
105999
.10.1016/j.cnsns.2021.105999
23.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1983
, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems
,”
ASME J. Appl. Mech.
,
50
, pp.
871
876
.10.1115/1.3167160
24.
Liu
,
G.
,
Lv
,
Z. R.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2018
, “
Quasi-Periodic Aeroelastic Response Analysis of an Airfoil With External Store by Incremental Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
100
, pp.
10
19
.10.1016/j.ijnonlinmec.2018.01.004
25.
Zhou
,
B.
,
Thouverez
,
F.
, and
Lenoir
,
D.
,
2015
, “
A Variable-Coefficient Harmonic Balance Method for the Prediction of Quasi-Periodic Response in Nonlinear Systems
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
233
244
.10.1016/j.ymssp.2015.04.022
26.
Luo
,
A. C.
, and
Huang
,
J.
,
2012
, “
Approximate Solutions of Periodic Motions in Nonlinear Systems Via a Generalized Harmonic Balance
,”
J. Vib. Control
,
18
(
11
), pp.
1661
1674
.10.1177/1077546311421053
27.
Subramanian
,
S. C.
, and
Redkar
,
S.
,
2021
, “
Comparison of Poincare Normal Forms and Floquet Theory for Analysis of Linear Time Periodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
014502
.10.1115/1.4048715
28.
Chen
,
Y. M.
,
Liu
,
J. K.
, and
Meng
,
G.
,
2012
, “
An Incremental Method for Limit Cycle Oscillations of an Airfoil With an External Store
,”
Int. J. Non-Linear Mech.
,
47
(
3
), pp.
75
83
.10.1016/j.ijnonlinmec.2011.12.006
29.
Guennoun
,
K.
,
Houssni
,
M.
, and
Belhaq
,
M.
,
2002
, “
Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
,”
Nonlinear Dyn.
,
27
(
3
), pp.
211
236
.10.1023/A:1014496917703
30.
Guskov
,
M.
, and
Thouverez
,
F.
,
2012
, “
Harmonic Balance-Based Approach for Quasi-Periodic Motions and Stability Analysis
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031003
.10.1115/1.4005823
31.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2018
, “
An Approximate Analysis of Quasi-Periodic Systems Via Floquét Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021008
.10.1115/1.4037797
32.
Liao
,
H. T.
,
Zhao
,
Q. Y.
, and
Fang
,
D. N.
,
2020
, “
The Continuation and Stability Analysis Methods for Quasi-Periodic Solutions of Nonlinear Systems
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1469
1496
.10.1007/s11071-020-05497-7
33.
Liu
,
J. K.
,
Chen
,
F. X.
, and
Chen
,
Y. M.
,
2012
, “
Bifurcation Analysis of Aeroelastic Systems With Hysteresis by Incremental Harmonic Balance Method
,”
Appl. Math. Comput.
,
219
(
5
), pp.
2398
2411
.10.1016/j.amc.2012.08.034
34.
Zheng
,
Z.-C.
,
Lu
,
Z.-R.
,
Yanmao
,
C.
,
Liu
,
J.-K.
, and
Liu
,
G.
,
2021
, “
A Modified Incremental Harmonic Balance Method Combined With Tikhonov Regularization for Periodic Motion of Nonlinear System
,”
ASME J. Appl. Mech.
,
89
(
2
), pp.
1
16
.10.1115/1.4052573
35.
Chen
,
Y.
,
Lv
,
Z.
, and
Liu
,
J.
,
2017
, “
Error Estimation of Fourier Series Expansion and Implication to Solution Accuracy for Nonlinear Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011002
.10.1115/1.4034127
36.
Chen
,
J.
,
Zhang
,
W.
,
Yao
,
M.
,
Liu
,
J.
, and
Sun
,
M.
,
2018
, “
Vibration Reduction in Truss Core Sandwich Plate With Internal Nonlinear Energy Sink
,”
Compos. Struct.
,
193
, pp.
180
188
.10.1016/j.compstruct.2018.03.048
37.
Javidialesaadi
,
A.
, and
Wierschem
,
N. E.
,
2019
, “
An Inerter-Enhanced Nonlinear Energy Sink
,”
Mech. Syst. Signal Process.
,
129
, pp.
449
454
.10.1016/j.ymssp.2019.04.047
38.
Matouk
,
A.
,
Elsadany
,
A.
, and
Xin
,
B.
,
2017
, “
Neimark–Sacker Bifurcation Analysis and Complex Nonlinear Dynamics in a Heterogeneous Quadropoly Game With an Isoelastic Demand Function
,”
Nonlinear Dyn.
,
89
(
4
), pp.
2533
2552
.10.1007/s11071-017-3602-2
39.
Detroux
,
T.
,
Habib
,
G.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
Performance, Robustness and Sensitivity Analysis of the Nonlinear Tuned Vibration Absorber
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
799
809
.10.1016/j.ymssp.2015.01.035
40.
Xie
,
L.
,
Baguet
,
S.
,
Prabel
,
B.
, and
Dufour
,
R.
,
2017
, “
Bifurcation Tracking by Harmonic Balance Method for Performance Tuning of Nonlinear Dynamical Systems
,”
Mech. Syst. Signal Process.
,
88
, pp.
445
461
.10.1016/j.ymssp.2016.09.037
41.
Luo
,
A. C.
,
2014
, “
On Analytical Routes to Chaos in Nonlinear Systems
,”
Int. J. Bifurcation Chaos
,
24
(
04
), p.
1430013
.10.1142/S0218127414300134
You do not currently have access to this content.