Abstract

The article aims to propose the Lerch operational matrix method to solve a stochastic fractional differential equation. In this approach, the Lerch polynomials have been used as a basis function. Then, the product operational matrix, integral operational matrix, stochastic operational matrix, and operational matrix of fractional integral based on the Lerch polynomials have been constructed. The main characteristic of this method is to reduce the stochastic fractional differential equation into a system of algebraic equations by using derived operational matrices and suitable collocation points. Moreover, the convergence and error analysis of the presented method is also discussed in detail. Additionally, the applicability of the proposed technique is also demonstrated by solving some examples. To confirm the accuracy and effectiveness of the suggested technique, a comparison between the results produced by the proposed method and those obtained by other methods has been provided.

References

1.
Cayan
,
S.
, and
Sezer
,
M.
,
2020
, “
Lerch Matrix Collocation Method for 2D and 3D Volterra Type Integral and Second Order Partial Integro Differential Equations Together With an Alternative Error Analysis and Convergence Criterion Based on Residual Functions
,”
Turk. J. Math.
,
44
(
6
), pp.
2073
2098
.10.3906/mat-2004-81
2.
Nemati
,
S.
, and
Ordokhani
,
Y.
,
2013
, “
Legendre Expansion Methods for the Numerical Solution of Nonlinear 2D Fredholm Integral Equations of the Second Kind
,”
J. Appl. Math. Inf.
,
31
(
5_6
), pp.
609
621
.10.14317/jami.2013.609
3.
Behera
,
S.
, and
Saha Ray
,
S.
,
2022
, “
A Wavelet-Based Novel Technique for Linear and Nonlinear Fractional Volterra–Fredholm Integro-Differential Equations
,”
Comput. Appl. Math.
,
41
(
2
), pp.
1
28
.10.1007/s40314-022-01772-y
4.
Saha Ray
,
S.
, and
Gupta
,
A. K.
,
2018
,
Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations
, 1st ed.,
Chapman and Hall/CRC Press
,
New York
.
5.
Maleknejad
,
K.
,
Almasieh
,
H.
, and
Roodaki
,
M.
,
2010
, “
Triangular Functions (TF) Method for the Solution of Nonlinear Volterra–Fredholm Integral Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
11
), pp.
3293
3298
.10.1016/j.cnsns.2009.12.015
6.
Masouri
,
Z.
,
Babolian
,
E.
, and
Hatamzadeh-Varmazyar
,
S.
,
2010
, “
An Expansion–Iterative Method for Numerically Solving Volterra Integral Equation of the First Kind
,”
Comput. Math. Appl.
,
59
(
4
), pp.
1491
1499
.10.1016/j.camwa.2009.11.004
7.
Sahu
,
P. K.
, and
Saha Ray
,
S.
,
2014
, “
Numerical Solutions for the System of Fredholm Integral Equations of Second Kind by a New Approach Involving Semiorthogonal B-Spline Wavelet Collocation Method
,”
Appl. Math. Comput.
,
234
, pp.
368
379
.10.1016/j.amc.2014.02.043
8.
Li
,
X.
,
2012
, “
Numerical Solution of Fractional Differential Equations Using Cubic B-Spline Wavelet Collocation Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
10
), pp.
3934
3946
.10.1016/j.cnsns.2012.02.009
9.
Chen
,
X.
,
Yang
,
L.
,
Duan
,
J.
, and
Karniadakis
,
G. E.
,
2021
, “
Solving Inverse Stochastic Problems From Discrete Particle Observations Using the Fokker–Planck Equation and Physics-Informed Neural Networks
,”
SIAM J. Sci. Comput.
,
43
(
3
), pp.
B811
B830
.10.1137/20M1360153
10.
McKane
,
A. J.
, and
Newman
,
T. J.
,
2004
, “
Stochastic Models in Population Biology and Their Deterministic Analogs
,”
Phys. Rev. E
,
70
(
4
), p.
041902
.10.1103/PhysRevE.70.041902
11.
Tadmon
,
C.
, and
Njike Tchaptchet
,
E. R.
,
2022
, “
Impact of Financial Crisis on Economic Growth: A Stochastic Model
,”
Stochastics Qual. Control
,
37
(
1
), pp.
45
63
.10.1515/eqc-2021-0049
12.
Fareed
,
A. F.
,
Semary
,
M. S.
, and
Hassan
,
H. N.
,
2022
, “
Two Semi-Analytical Approaches to Approximate the Solution of Stochastic Ordinary Differential Equations With Two Enormous Engineering Applications
,”
Alexandria Eng. J.
,
61
(
12
), pp.
11935
11945
.10.1016/j.aej.2022.05.054
13.
Kloeden
,
P.
, and
Neuenkirch
,
A.
,
2013
, “
Convergence of Numerical Methods for Stochastic Differential Equations in Mathematical Finance
,”
Recent Developments in Computational Finance: Foundations, Algorithms and Applications
, World Scientific, Singapore, pp.
49
80
.
14.
Singh
,
P.
, and
Saha Ray
,
S.
,
2022
, “
Two Reliable Methods for Numerical Solution of Nonlinear Stochastic Itô-Volterra Integral Equation
,”
Stochastic Anal. Appl.
,
40
(
5
), pp.
891
913
.10.1080/07362994.2021.1967761
15.
Mohammadi
,
F.
,
2016
, “
Second Kind Chebyshev Wavelet Galerkin Method for Stochastic Itô-Volterra Integral Equations
,”
Mediterranean J. Math.
,
13
(
5
), pp.
2613
2631
.10.1007/s00009-015-0642-z
16.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
,
Shakiba
,
A.
, and
Cattani
,
C.
,
2016
, “
Legendre Wavelets Galerkin Method for Solving Nonlinear Stochastic Integral Equations
,”
Nonlinear Dyn.
,
85
(
2
), pp.
1185
1202
.10.1007/s11071-016-2753-x
17.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
,
Maalek Ghaini
,
F. M.
, and
Cattani
,
C.
,
2014
, “
A Computational Method for Solving Stochastic Itô–Volterra Integral Equations Based on Stochastic Operational Matrix for Generalized Hat Basis Functions
,”
J. Comput. Phys.
,
270
, pp.
402
415
.10.1016/j.jcp.2014.03.064
18.
Mohammadi
,
F.
,
2015
, “
A Wavelet-Based Computational Method for Solving Stochastic Itô–Volterra Integral Equations
,”
J. Comput. Phys.
,
298
, pp.
254
265
.10.1016/j.jcp.2015.05.051
19.
Yaghoobnia
,
A. R.
,
Khodabin
,
M.
, and
Ezzati
,
R.
,
2021
, “
Numerical Solution of Stochastic Ito-Volterra Integral Equations Based on Bernstein Multi-Scaling Polynomials
,”
Appl. Math.-A J. Chin. Universities
,
36
(
3
), pp.
317
329
.10.1007/s11766-021-3694-9
20.
Mohammadi
,
F.
,
2019
, “
Numerical Treatment of Nonlinear Stochastic Itô-Volterra Integral Equations by Piecewise Spectral-Collocation Method
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
3
), p.
031007
.10.1115/1.4042440
21.
Yang
,
Y.
,
Heydari
,
M. H.
,
Avazzadeh
,
Z.
, and
Atangana
,
A.
,
2020
, “
Chebyshev Wavelets Operational Matrices for Solving Nonlinear Variable-Order Fractional Integral Equations
,”
Adv. Differ. Equ.
,
2020
(
1
), pp.
1
24
.10.1186/s13662-020-03047-4
22.
Doàn
,
T. S.
,
Huong
,
P. T.
,
Kloeden
,
P. E.
, and
Vu
,
A. M.
,
2020
, “
Euler–Maruyama Scheme for Caputo Stochastic Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
380
, p.
112989
.10.1016/j.cam.2020.112989
23.
Taheri
,
Z.
,
Javadi
,
S.
, and
Babolian
,
E.
,
2017
, “
Numerical Solution of Stochastic Fractional Integro-Differential Equation by the Spectral Collocation Method
,”
J. Comput. Appl. Math.
,
321
, pp.
336
347
.10.1016/j.cam.2017.02.027
24.
Mirzaee
,
F.
, and
Alipour
,
S.
,
2020
, “
Cubic B-Spline Approximation for Linear Stochastic Integro-Differential Equation of Fractional Order
,”
J. Comput. Appl. Math.
,
366
, p.
112440
.10.1016/j.cam.2019.112440
25.
Mohammadi
,
F.
,
2016
, “
Wavelet Galerkin Method for Solving Stochastic Fractional Differential Equations
,”
J. Fractional Calculus Appl.
,
7
(
1
), pp.
73
86
.10.1016/j.apnum.2019.01.009
26.
Kamrani
,
M.
,
2015
, “
Numerical Solution of Stochastic Fractional Differential Equations
,”
Numer. Algorithms
,
68
(
1
), pp.
81
93
.10.1007/s11075-014-9839-7
27.
Mirzaee
,
F.
, and
Samadyar
,
N.
,
2017
, “
Application of Orthonormal Bernstein Polynomials to Construct a Efficient Scheme for Solving Fractional Stochastic Integro-Differential Equation
,”
Optik
,
132
, pp.
262
273
.10.1016/j.ijleo.2016.12.029
28.
Abdi-Mazraeh
,
S.
,
Kheiri
,
H.
, and
Irandoust-Pakchin
,
S.
,
2022
, “
Construction of Operational Matrices Based on Linear Cardinal B-Spline Functions for Solving Fractional Stochastic Integro-Differential Equation
,”
J. Appl. Math. Comput.
,
68
(
1
), pp.
151
175
.10.1007/s12190-021-01519-8
29.
Sabatier
,
J.
, and
Farges
,
C.
,
2021
, “
Initial Value Problems Should Not Be Associated to Fractional Model Descriptions Whatever the Derivative Definition Used
,”
Am. Inst. Math. Sci. Math.
,
6
(
10
), pp.
11318
11329
.10.3934/math.2021657
30.
Oksendal
,
B.
,
1998
,
Stochastic Differential Equations, an Introduction With Applications
, 5th ed.,
Springer-Verlag
,
New York
.
You do not currently have access to this content.