Abstract

Duffing oscillator with delayed feedback is widely used in engineering. Chaos in such system plays an important role in the dynamic response of the system, which may lead to the collapse of the system. Therefore, it is necessary and significant to study the chaotic dynamical behaviors of such systems. Chaotic dynamics of the Duffing oscillator subjected to periodic external and nonlinear parameter excitations with delayed feedback are investigated both analytically and numerically in this paper. With the Melnikov method, the critical value of chaos arising from heteroclinic intersection is derived analytically. The feature of the critical curves separating chaotic and nonchaotic regions on the excitation frequency and the time delay is investigated analytically in detail. Under the corresponding system parameters, the monotonicity of the critical value to the excitation frequency, displacement time delay, and velocity time delay is obtained rigorously. The chaos threshold obtained by the analytical method is verified by numerical simulations.

References

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
,
Hoboken, NJ
.
2.
Shi
,
L. S.
,
Zou
,
Y. K.
, and
Küpper
,
T.
,
2013
, “
Melnikov Method and Detection of Chaos for Non-Smooth Systems
,”
Acta Math. Appl. Sin., English Ser.
,
29
(
4
), pp.
881
896
.10.1007/s10255-013-0265-8
3.
Tian
,
R. L.
,
Wang
,
T.
,
Zhou
,
Y. F.
,
Li
,
J.
, and
Zhu
,
S. T.
,
2020
, “
Heteroclinic Chaotic Threshold in a Nonsmooth System With Jump Discontinuities
,”
Int. J. Bifurcation Chaos
,
30
(
10
), p.
2050141
.10.1142/S0218127420501412
4.
Taffo
,
G. K.
, and
Siewe
,
M. S.
,
2013
, “
Parametric Resonance, Stability and Heteroclinic Bifurcation in a Nonlinear Oscillator With Time-Delay: Application to a Quarter-Car Model
,”
Mech. Res. Commun.
,
52
, pp.
1
10
.10.1016/j.mechrescom.2013.05.007
5.
Karmakar
,
B.
,
Biswas
,
D.
, and
Banerjee
,
T.
,
2020
, “
Oscillating Synchronization in Delayed Oscillators With Time-Varying Time Delay Coupling: Experimental Observation
,”
Chaos
30
(
6
), p.
063149
.10.1063/5.0003700
6.
Wu
,
Z. G.
,
Lam
,
J.
,
Su
,
H. Y.
, and
Chu
,
J.
,
2012
, “
Stability and Dissipativity Analysis of Static Neural Networks With Time Delay
,”
IEEE Trans. Neural Networks Learn. Syst.
,
23
(
2
), pp.
199
210
.10.1109/TNNLS.2011.2178563
7.
Shaik
,
J.
,
Uchida
,
T. K.
, and
Vyasarayani
,
C. P.
,
2022
, “
Effect of Delay on Control of Direct Resonance of Ships in Beam Waves Using a Proportional-Derivative Controller With Delay
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
6
), p.
061004
.10.1115/1.4053561
8.
Li
,
Y. X.
,
Wei
,
Z. C.
,
Kapitaniak
,
T.
, and
Zhang
,
W.
,
2022
, “
Stochastic Bifurcation and Chaos Analysis for a Class of Ships Rolling Motion Under Non-Smooth Perturbation and Random Excitation
,”
Ocean Eng.
,
266
, p.
112859
.10.1016/j.oceaneng.2022.112859
9.
Wei
,
Z. C.
,
Li
,
Y. X.
,
Moroz
,
I.
, and
Zhang
,
W.
,
2022
, “
Melnikov-Type Method for a Class of Planar Hybrid Piecewise-Smooth Systems With Impulsive Effect and Noise Excitation: Heteroclinic Orbits
,”
Chaos
,
32
(
10
), p.
103127
.10.1063/5.0106073
10.
Li
,
Y. X.
,
Wei
,
Z. C.
,
Zhang
,
W.
, and
Kapitaniak
,
T.
,
2023
, “
Melnikov-Type Method for Chaos in a Class of Hybrid Piecewise-Smooth Systems With Impact and Noise Excitation Under Unilateral Rigid Constraint
,”
Appl. Math. Modell.
,
122
, pp.
506
523
.10.1016/j.apm.2023.06.015
11.
Yagasaki
,
K.
,
2007
, “
Bifurcations and Chaos in Vibrating Microcantilevers of Tapping Mode Atomic Force Microscopy
,”
Int. J. Non-Linear Mech.
,
42
(
4
), pp.
658
672
.10.1016/j.ijnonlinmec.2007.01.009
12.
Niu
,
J. C.
,
Liu
,
R. Y.
,
Shen
,
Y. J.
, and
Yang
,
S. P.
,
2019
, “
Chaos Detection of Duffing System With Fractional-Order Derivative by Melnikov Method
,”
Chaos
,
29
(
12
), p.
123106
.10.1063/1.5124367
13.
Feng
,
J. Q.
, and
Liu
,
J. L.
,
2015
, “
Chaotic Dynamics of the Vibro-Impact System Under Bounded Noise Perturbation
,”
Chaos, Solitons Fractals
,
73
, pp.
10
16
.10.1016/j.chaos.2015.01.003
14.
Lakrad
,
F. Z.
, and
Charafi
,
M. M.
,
2005
, “
Perturbation Methods and the Melnikov Functions for Slowly Varying Oscillators
,”
Chaos, Solitons Fractals
,
25
(
3
), pp.
675
680
.10.1016/j.chaos.2004.11.041
15.
Zhang
,
X. Y.
, and
Wu
,
Z. Q.
,
2018
, “
Bifurcations in Tri-Stable Duffing–Van Der Pol Oscillator With Recycling Noise
,”
Mod. Phys. Lett. B
,
32
(
20
), p.
1850228
.10.1142/S0217984918502287
16.
Park
,
G. S.
, and
Choi
,
H. L.
,
2010
, “
On Stability of Linear Time-Delay Systems With Multiple Time-Varying Delays
,”
IEICE Trans. Fundam. Electron., Commun. Comput. Sci.
,
E93-A
(
7
), pp.
1384
1387
.10.1587/transfun.E93.A.1384
17.
Natori
,
K. J.
,
Tsuji
,
T.
,
Ohnishi
,
K. H.
,
Hace
,
A.
, and
Jezernik
,
K.
,
2010
, “
Time-Delay Compensation by Communication Disturbance Observer for Bilateral Teleoperation Under Time-Varying Delay
,”
IEEE Trans. Ind. Electron.
,
57
(
3
), pp.
1050
1062
.10.1109/TIE.2009.2028337
18.
Shao
,
Y. Y.
,
Liu
,
X. D.
,
Sun
,
X.
, and
Su
,
Z.
,
2012
, “
A New Admissibility Condition of Discrete-Time Singular Systems With Time-Varying Delays
,”
Int. J. Autom. Comput.
,
9
(
5
), pp.
480
486
.10.1007/s11633-012-0670-0
19.
Pejovic
,
M. M.
, and
Pejovic
,
M. M.
,
2008
, “
Contribution of Statistical Time Delay and Formative Time to Total Electrical Breakdown Time Delay in Argon for Different Afterglow Periods
,”
J. Vac. Sci. Technol. A
,
26
(
5
), pp.
1326
1330
.10.1116/1.2966435
20.
Zhou
,
L. Q.
,
Chen
,
F. Q.
, and
Chen
,
Y. S.
,
2015
, “
Bifurcations and Chaotic Motions of a Class of Mechanical System With Parametric Excitations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054502
.10.1115/1.4029620
21.
Zhao
,
W. L.
,
Yang
,
H.
,
Liu
,
F. C.
,
Su
,
Y.
, and
Song
,
L. J.
,
2020
, “
The Energy Compensation of the HRG Based on the Double-Frequency Parametric Excitation of the Discrete Electrode
,”
Sensors
,
20
(
12
), p.
3549
.10.3390/s20123549
22.
Welte
,
J.
,
Kniffka
,
T. J.
, and
Ecker
,
H.
,
2013
, “
Parametric Excitation in a Two Degree of Freedom MEMS System
,”
Shock Vib.
,
20
(
6
), pp.
1113
1124
.10.1155/2013/502109
23.
Sahoo
,
P. K.
, and
Chatterjee
,
S.
,
2021
, “
High-Frequency Vibrational Control of Principal Parametric Resonance of a Nonlinear Cantilever Beam: Theory and Experiment
,”
J. Sound Vib.
,
505
, p.
116138
.10.1016/j.jsv.2021.116138
24.
Zhang
,
W.
,
Zheng
,
Y.
,
Liu
,
T.
, and
Guo
,
X. Y.
,
2019
, “
Multi-Pulse Jumping Double-Parameter Chaotic Dynamics of Eccentric Rotating Ring Truss Antenna Under Combined Parametric and External Excitations
,”
Nonlinear Dyn.
,
98
(
1
), pp.
761
800
.10.1007/s11071-019-05227-8
25.
Kim
,
S. Y.
, and
Kim
,
Y. T.
,
2000
, “
Dynamic Stabilization in the Double-Well Duffing Oscillator
,”
Phys. Rev. E
,
61
(
6
), pp.
6517
6520
.10.1103/PhysRevE.61.6517
26.
Feng
,
S. D.
, and
Chen
,
L. Q.
,
2009
, “
Homotopy Analysis Approach to Duffing-Harmonic Oscillator
,”
Appl. Math. Mech.
,
30
(
9
), pp.
1083
1089
.10.1007/s10483-009-0902-7
27.
Luo
,
A. C. J.
, and
Huang
,
J. Z.
,
2013
, “
Analytical Solutions for Asymmetric Periodic Motions to Chaos in a Hardening Duffing Oscillator
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
417
438
.10.1007/s11071-012-0725-3
28.
Luo
,
A. C. J.
, and
O'Connor
,
D. M.
,
2014
, “
On Periodic Motions in a Parametric Hardening Duffing Oscillator
,”
Int. J. Bifurcation Chaos
,
24
(
1
), p.
1430004
.10.1142/S0218127414300043
29.
Li
,
C. J.
,
Xu
,
X. M.
,
Ding
,
Y. P.
,
Yin
,
L. Z.
, and
Dou
,
B. B.
,
2018
, “
Weak Photoacoustic Signal Detection Based on the Differential Duffing Oscillator
,”
Int. J. Mod. Phys. B
,
32
(
9
), p.
1850103
.10.1142/S0217979218501035
30.
Shen
,
Y. J.
,
Wen
,
S. F.
,
Yang
,
S. P.
,
Guo
,
S. Q.
, and
Li
,
L. R.
,
2018
, “
Analytical Threshold for Chaos in a Duffing Oscillator With Delayed Feedbacks
,”
Int. J. Non-Linear Mech.
,
98
, pp.
173
179
.10.1016/j.ijnonlinmec.2017.10.013
31.
Kudryashov
,
N. A.
,
2021
, “
The Generalized Duffing Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
93
, p.
105526
.10.1016/j.cnsns.2020.105526
32.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
Wiley
,
Hoboken, NJ
.
33.
Wiggins
,
S.
,
1990
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer
,
New York
.
34.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, Vol.
42
,
Springer Science & Business Media
,
Berlin
.
35.
Palka
,
B. P.
,
1991
,
An Introduction to Complex Function Theory
,
Springer Science & Business Media
,
Berlin
.
You do not currently have access to this content.