In this paper, the global transversality and tangency in two-dimensional nonlinear dynamical systems are discussed, and the exact energy increment function (L-function) for such nonlinear dynamical systems is presented. The Melnikov function is an approximate expression of the exact energy increment. A periodically forced, damped Duffing oscillator with a separatrix is investigated as a sampled problem. The corresponding analytical conditions for the global transversality and tangency to the separatrix are derived. Numerical simulations are carried out for illustrations of the analytical conditions. From analytical and numerical results, the simple zero of the energy increment (or the Melnikov function) may not imply that chaos exists. The conditions for the global transversality and tangency to the separatrix may be independent of the Melnikov function. Therefore, the analytical criteria for chaotic motions in nonlinear dynamical systems need to be further developed. The methodology presented in this paper is applicable to nonlinear dynamical systems without any separatrix.

1.
Luo
,
A. C. J.
, 2007, “
A Theory for n-Dimensional, Nonlinear Dynamics on Continuous Vector Fields
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
, pp.
117
194
.
2.
Poincare
,
H.
, 1899,
LesMethods Nouvelles de la Mecanique Celests
,
Gauthier-Zvillars
,
Paris
, Vol.
3
.
3.
Melnikov
,
V. K.
, 1963, “
On the Stability of the Center for Time Periodic Perturbations
,”
Trans. Mosc. Math. Soc.
0077-1554,
12
, pp.
1
57
.
4.
Zaslavsky
,
G. M.
, and
Filonenko
,
N. N.
, 1968, “
Stochastic Instability of Trapped Particles and Conditions of Application of the Quasi-Linear Approximation
,”
Sov. Phys. JETP
0038-5646,
27
, pp.
851
857
.
5.
Chirikov
,
B. V.
, 1979, “
A Universal Instability of Many-Dimensional Oscillator Systems
,”
Phys. Rep.
0370-1573,
52
, pp.
263
379
.
6.
Luo
,
A. C. J.
, 1995, “
Analytical Modeling of Bifurcations, Chaos, and Multifractals in Nonlinear Dynamics
,” Ph.D. Dissertation, University of Manitoba, Winnipeg, Manitoba, Canada.
7.
Luo
,
A. C. J.
, and
Han
,
R. P. S.
, 2001, “
The Resonance Theory for Stochastic Layers in Nonlinear Dynamical Systems
,”
Chaos, Solitons Fractals
0960-0779,
12
, pp.
2493
2508
.
8.
Luo
,
A. C. J.
,
Gu
,
K.
, and
Han
,
R. P. S.
, 1999, “
Resonant-Separatix Webs in Stochastic Layers of the Twin-Well Duffing Oscillator
,”
Nonlinear Dyn.
0924-090X,
19
, pp.
37
48
.
9.
Luo
,
A. C. J.
, 2002, “
Resonant Layers in a Parametrically Excited Pendulum
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
12
, pp.
409
419
.
10.
Greenspan
,
B. D.
, 1981, “
Bifurcations in Periodically Forced Oscillations: Subharmonics and Homoclinic Orbits
,” Ph.D. thesis, Center for Applied Mathematics, Cornell University, Ithaca, NY.
11.
Greenspan
,
B. D.
, and
Holmes
,
P. J.
, 1982, “
Homoclinic Orbits, Subharmonics and Global Bifurcations in Forced Oscillations
,” in
Nonlinear Dynamics and Turbulence
,
G.
Barenblatt
,
G.
Iooss
, and
D. D.
Joseph
, eds.
Pitman
,
London
.
12.
Guckenheimer
,
J.
, and
Holmes
,
P. J.
, 1983,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
,
New York
.
13.
Luo
,
A. C. J.
, and
Han
,
R. P. S.
, 1999, “
Analytical Predictions of Chaos in a Nonlinear Rod
,”
J. Sound Vib.
0022-460X,
227
(
3
), pp.
523
544
.
14.
Luo
,
A. C. J.
, 2006,
Singularity and Dynamics on Discontinuous Vector Fields
,
Elsevier
,
Amsterdam
.
You do not currently have access to this content.