An approach to development of reduced order models for systems with local nonlinearities is presented. The key of this approach is the augmentation of conventional basis functions with others having appropriate discontinuities at the locations of nonlinearity. A Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system very efficiently—employing small basis sets. This method is particularly useful for problems of structural dynamics, but may have application in other fields as well. For problems involving small amplitude dynamics, when one employs as a basis the eigenmodes of a reference linear system plus the discontinuous (joint) modes, the resulting predictions, though still nonlinear, are approximated well as linear combinations of the eigenmodes. This is in good agreement with the experimental observation that jointed structures, though demonstrably nonlinear, manifest kinematics that are well described using eigenmodes of a corresponding system where the joints are replaced by linear springs.

1.
Jezequel
,
L.
, 1984, “
Modal Synthesis of Large Structures With Nonlinear Joints From Vibration Tests
,”
Proceedings of the 2nd International Conference on Recent Advances in Structural Dynamics
, University of Southampton (England) on 9–13 April, pp.
281
295
.
2.
Nobari
,
A.
,
Robb
,
D.
, and
Ewins
,
D.
, 1995, “
A New Approach to Modal-Based Structural Dynamic Model Updating and Joint Identification
,”
Mech. Syst. Signal Process.
0888-3270,
9
(
1
), pp.
85
100
.
3.
Ren
,
Y.
, and
Beards
,
C. F.
, 1995, “
Identification of Joint Properties of a Structure Using FRF Data
,”
J. Sound Vib.
0022-460X,
186
, pp.
567
587
.
4.
Mottershead
,
J. E.
,
Friswell
,
M. I.
,
Ng
,
G. H. T.
, and
Brandon
,
J. A.
, 1996, “
Geometric Parameters for Finite Element Model Updating of Joints and Constraints
,”
Mech. Syst. Signal Process.
0888-3270,
10
, pp.
171
182
.
5.
Shamine
,
D. M.
,
Hong
,
S. W.
, and
Shin
,
Y. C.
, 2000, “
An In Situ Modal-Based Method for Structural Dynamic Joint Parameter Identification
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
, pp.
641
653
.
6.
Sastry
,
S.
, 1999,
Nonlinear Systems: Analysis, Stability, and Control
,
Springer
,
Berlin, Germany
.
7.
Bowden
,
M.
, and
Dugundjit
,
J.
, 1988, “
Effects of Joint Damping and Joint Nonlinearity on the Dynamics of Space Structures
,”
Proceedings of the Structures Dynamics and Materials Conference
,
Williamsbury, VA
, April, Paper No. AIAA 2480 in 88.
8.
Bowden
,
M.
, and
Dugundjit
,
J.
, 1990, “
Joint Damping and Nonlinearity in Dynamics of Space Structures
,”
AIAA J.
0001-1452,
28
(
4
), pp.
740
749
.
9.
Tanrikulu
,
O.
,
Kuran
,
B.
,
Ozguven
,
H. N.
, and
Imregun
,
M.
, 1993, “
Forced Harmonic Response Analysis of Nonlinear Structures Using Describing Functions
,”
AIAA J.
0001-1452,
31
(
7
), pp.
1313
1320
.
10.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1995,
Nonlinear Oscillations
,
Wiley
,
New York
.
11.
Özer
,
M. B.
, and
Özgüven
,
H. N.
, 2002, “
A New Method for Localization and Identification of Non-Linearities in Structures
,”
Proceedings of ESDA 2002: 6th Biennial Conference on Engineering Systems Design and Analysis
,
ASME
,
Istanbul, Turkey
, July 8–11, ASME.
12.
Özer
,
M. B.
,
Özgüven
,
H. N.
, and
Royston
,
T. J.
, 2005, “
Identification of Structural Non-Linearities Using Describing Functions and Sherman-Morrison Method
,”
Proceedings of the 23rd International Modal Analysis Conference
,
Orlando, FL
, January 30–February 3, Society for Experimental Mechanics, pp.
199
212
.
13.
Siller
,
H. R. E.
, 2004, “
Non-Linear Model Analysis Methods for Engineering Structures
,” Ph.D. thesis, Imperial College, London, UK.
14.
Segalman
,
D. J.
, 2005, “
A Four-Parameter Iwan Model for Lap-Type Joints
,”
ASME J. Appl. Mech.
0021-8936,
72
(
5
), pp.
752
760
.
15.
Farhat
,
C.
,
Pierson
,
K.
, and
Lesoinne
,
M.
, 2000, “
The Second Generation FETI Methods and Their Application to the Parallel Solution of Large-Scale Linear and Geometrically Non-Linear Structural Analysis Problems
,”
Comput. Fluids
0045-7930,
184
, pp.
333
374
.
16.
Sun
,
J.
,
Michaleris
,
P.
,
Gupta
,
A.
, and
Raghavan
,
P.
, 2005, “
A Fast Implementation of the FETI-DP Method: FETI-DP-RBS-LNA and Applications on Large Scale Problems With Localized Non-Linearities
,”
Int. J. Numer. Methods Eng.
0029-5981,
63
, pp.
833
858
.
17.
Reese
,
G. M.
,
Bhardwaj
,
M. K.
,
Segalman
,
D. J.
,
Alvin
,
K. F.
, and
Driessen
,
B. J.
, 1999, “
Salinas User’s Notes
,” Tech. Report No. SAND99-2801,
Sandia National Laboratories
, Albuquerque, NM.
18.
Bhardwaj
,
M.
,
Day
,
D.
,
Farhat
,
C.
,
Lesoinne
,
M.
,
Pierson
,
K.
, and
Rixen
,
D.
, 2000, “
Application of the FETI Method to ASCI Problems-Scalability Results on 1000 Processors and Discussion of Highly Heterogeneous Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
(
1
), pp.
513
535
.
19.
Bernardi
,
C.
,
Maday
,
Y.
, and
Patera
,
A. T.
, 1994, “
A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method
,”
Collège de France Seminar
,
H.
Brezis
and
J.-L.
Lions
, eds.,
Longman Sci. Tech.
,
Harlow
, pp.
13
51
.
20.
Royston
,
T. J.
, and
Singh
,
R.
, 1996, “
Periodic Response of Mechanical Systems With Local Non-Linearities Using an Enhanced Galerkin Technique
,”
J. Sound Vib.
0022-460X,
194
, pp.
243
263
.
21.
Qu
,
Z. Q.
, 2002, “
Model Reduction for Dynamical Systems With Local Nonlinearities
,”
AIAA J.
0001-1452,
40
, pp.
327
333
.
22.
Hagedorn
,
P.
, and
Schramm
,
W.
, 1988, “
On the Dynamics of Large Systems With Localized Nonlinearities
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
55
, pp.
946
951
.
23.
Gordis
,
J. H.
, and
Radwick
,
J.
, 1999, “
Efficient Transient Analysis for Large Locally Nonlinear Structures
,”
Shock Vib.
1070-9622,
6
, pp.
1
9
.
24.
Whiteman
,
W. W.
, and
Ferri
,
A. A.
, 1997, “
Multi-Mode Analysis of Beam-Like Structures Subjected to Displacement-Dependent Dry Friction Damping
,”
J. Sound Vib.
0022-460X,
207
, pp.
403
418
.
25.
Fey
,
R. H. B.
,
vanCampen
,
D. H.
, and
deKraker
,
A.
, 1996, “
Long Term Structural Dynamics of Mechanical Systems With Local Nonlinearities
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
118
, pp.
147
153
.
26.
Simmermacher
,
T.
,
Paez
,
T.
,
Urbina
,
A.
,
Bitsie
,
F.
,
Gregory
,
D.
,
Resor
,
B.
, and
Segalman
,
D. J.
, 2004, “
Probabilistic Modeling of Localized Nonlinearities Using Component Mode Synthesis
,”
Proceedings of the 22nd International Modal Analysis Conference (IMAC-XXII)
,
Dearborn, MI
, January 26–29.
27.
Seshu
,
P.
, 1997, “
Substructuring and Component Mode Synthesis
,”
Shock Vib.
1070-9622,
4
, pp.
199
210
.
28.
Zheng
,
T.
, and
N. Hasebe
,
N.
, 2000, “
Nonlinear Dynamic Behaviors of a Complex Rotor-Bearing System
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
67
, pp.
485
495
.
29.
Kerschen
,
G.
,
Golinval
,
J. C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2005, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
0924-090X,
41
(
1–3
), pp.
147
169
.
30.
Chu
,
C.
, and
Milman
,
M. H.
, 1992, “
Eigenvalue Error Analysis of Viscously Damped Structures Using a Ritz Reduction Method
,”
AIAA J.
0001-1452,
30
, pp.
2935
2944
.
31.
Milman
,
M. H.
, and
Chu
,
C. C.
, 1994, “
Optimization Methods for Passive Damper Placement and Tuning
,”
J. Guid. Control Dyn.
0731-5090,
17
(
4
), pp.
848
56
.
32.
Segalman
,
D. J.
, 2006, “
Model Reduction of Systems With Localized Nonlinearities
,” Tech. Report No. SAND2006-1789,
Sandia National Laboratories
, Albuquerque, NM.
33.
Segalman
,
D. J.
, 2005, “
Modelling Joint Friction in Structural Dynamics
,”
Struct. Health Monit.
1475-9217,
13
(
1
), pp.
430
453
.
34.
Masing
,
G.
, 1926, “
Eigenspannungen und Verfestigung Beim Messing (Self-Stretching and Hardening for Brass)
,”
Proceedings 2nd International Congress on Applied Mechanics
,
Zurich, Switzerland
, 12–17 September, pp.
332
335
.
35.
Prandtl
,
L.
, 1928, “
Ein Gedankenmodell zur Kinetischen Theorie der Festen Körper
,”
Z. Angew. Math. Mech.
0044-2267,
8
, pp.
85
106
.
36.
Ishlinskii
,
A. Y.
, 1944, “
Some Applications of Statistical Methods to Describing Deformations of Bodies
,”
Izvestiya Akademii Nauk SSSR
, Izvestija, Academy of Sciences, USSR,
9
, pp.
580
590
.
37.
Iwan
,
W. D.
, 1966, “
Distributed-Element Model for Hysteresis and its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
0021-8936,
33
(
4
), pp.
893
900
.
38.
Iwan
,
W. D.
, 1967, “
On a Class of Models for Yielding Behavior of Continuous and Composite Systems
,”
ASME J. Appl. Mech.
0021-8936,
34
(
3
), pp.
612
617
.
39.
Lubarda
,
V. A.
,
Sumarac
,
D.
, and
Krajcinovic
,
D.
, 1993, “
Preisach Model and Hysteretic Behaviour of Ductile Materials
,”
Eur. J. Mech. A/Solids
0997-7538,
12
, pp.
445
470
.
40.
Preisach
,
F.
, 1935, “
Über Die Magnetische Nachwirkung
,”
Z. Phys.
0044-3328,
94
(
5–6
), pp.
277
302
.
41.
Segalman
,
D. J.
, 2002, “
A Four-Parameter Iwan Model for Lap-Type Joints
,” Tech. Report No. SAND2002-3828,
Sandia National Laboratories
, Sandia, NM.
42.
Craig
,
R.
, 1981,
Structural Dynamics: An Introduction to Computer Methods
,
Wiley
,
New York
.
43.
Qu
,
Z.-Q.
, 2004,
Model Order Reduction Techniques with Applications in Finite Element Analysis
,
Graduate Texts in Mathematics
,
Springer
,
London, UK
.
You do not currently have access to this content.