Structural deformations of DNA play a central role in many biological processes, including gene expression. The structural deformations are sensitive to the material properties of the molecule, and these, in turn, vary along the molecule’s length according to its base-pair sequence. Examples of “sequence-dependent” material properties include the stress-free curvature and the stiffness for bending and torsion. Quantifying and separating these sequence-dependent properties from experimental data remains a significant challenge as they often work in unison in nature. In this paper, we offer a method for resolving and quantifying the sequence-dependent stiffness of DNA from cyclization (loop closure) experiments using a computational rod model of the molecule.

1.
Calladine
,
C. R.
,
Drew
,
H. R.
,
Luisi
,
B. F.
, and
Travers
,
A. A.
, 2004,
Understanding DNA, the Molecule and How It Works
,
Elsevier Academic
,
Amsterdam
.
2.
Branden
,
C.
, and
Tooze
,
J.
, 1999,
Introduction to Protein Structure
,
Garland
,
New York
.
3.
Lehninger
,
A. L.
,
Nelson
,
D. L.
, and
Cox
,
M. M.
, 2005,
Lehninger Principles of Biochenistry
,
Freeman
,
New York
.
4.
Franklin
,
R. E.
, and
Gosling
,
R. G.
, 1953, “
Molecular Configuration in Sodium Thymonucleate
,”
Nature (London)
0028-0836,
171
(
4356
), pp.
740
741
.
5.
Watson
,
J. D.
, and
Crick
,
F. H. C.
, 1953, “
Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid
,”
Nature (London)
0028-0836,
171
(
4356
), pp.
737
738
.
6.
Schleif
,
R.
, 1992, “
DNA Looping
,”
Annu. Rev. Biochem.
0066-4154,
61
, pp.
199
223
.
7.
Semsey
,
S.
,
Virnik
,
K.
, and
Adhya
,
S.
, 2005, “
A Gamut of Loops: Meandering DNA
,”
Trends Biochem. Sci.
0167-7640,
30
(
6
), pp.
334
341
.
8.
Goyal
,
S.
,
Lillian
,
T.
,
Blumberg
,
S.
,
Meiners
,
J. C.
,
Meyhofer
,
E.
, and
Perkins
,
N. C.
, 2007, “
Intrinsic Curvature of DNA Influences LacR-Mediated Looping
,”
Biophys. J.
0006-3495,
93
(
12
), in press.
9.
Goyal
,
S.
, 2006, “
A Dynamic Rod Model to Simulate Mechanics of Cables and DNA
,” Ph.D. thesis, Mechanical Engineering, University of Michigan, Ann Arbor.
10.
Schlick
,
T.
, 1995, “
Modeling Superhelical DNA: Recent Analytical and Dynamic Approaches
,”
Curr. Opin. Struct. Biol.
0959-440X,
5
(
2
), pp.
245
262
.
11.
Olson
,
W. K.
, 1996, “
Simulating DNA at Low Resolution
,”
Curr. Opin. Struct. Biol.
0959-440X,
6
(
2
), pp.
242
256
.
12.
Goyal
,
S.
,
Lillian
,
T.
,
Perkins
,
N. C.
, and
Meyhofer
,
E.
, 2005, “
Cable Dynamics Applied to Long-Length Scale Mechanics of DNA
,”
CD-ROM Proceedings of Sixth International Symposium of Cable Dynamics
,
Chaleston, SC
.
13.
Kehrbaum
,
S.
, and
Maddocks
,
J. H.
, 2000, “
Effective Properties of Elastic Rods With High Intrinsic Twist
,”
16th IMACS World Congress
.
14.
Rey
,
S.
, and
Maddocks
,
J. H.
, 2000, “
Buckling of an Elastic Rod With High Intrinsic Twist
,”
16th IMACS World Congress
.
15.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
, 2005, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods with Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
0021-9991,
209
(
1
), pp.
371
389
.
16.
Manning
,
R. S.
,
Maddocks
,
J. H.
, and
Kahn
,
J. D.
, 1996, “
A Continuum Rod Model of Sequence-Dependent DNA Structure
,”
J. Chem. Phys.
0021-9606,
105
(
13
), pp.
5626
5646
.
17.
Beveridge
,
D. L.
,
Barreiro
,
G.
,
Byun
,
K. S.
,
Case
,
D. A.
,
Cheatham
,
T. E.
,
Dixit
,
S. B.
,
Giudice
,
E.
,
Lankas
,
F.
,
Lavery
,
R.
,
Maddocks
,
J. H.
,
Osman
,
R.
,
Seibert
,
E.
,
Sklenar
,
H.
,
Stoll
,
G.
,
Thayer
,
K. M.
,
Varnai
,
P.
, and
Young
,
M. A.
, 2004, “
Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I. Research Design and Results on D(C(P)G) Steps
,”
Biophys. J.
0006-3495,
87
(
6
), pp.
3799
3813
.
18.
Dixit
,
S. B.
,
Beveridge
,
D. L.
,
Case
,
D. A.
,
Cheatham
,
T. E.
,
Giudice
,
E.
,
Lankas
,
F.
,
Lavery
,
R.
,
Maddocks
,
J. H.
,
Osman
,
R.
,
Sklenar
,
H.
,
Thayer
,
K. M.
, and
Varnai
,
P.
, 2005, “
Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. II: Sequence Context Effects on the Dynamical Structures of the 10 Unique Dinucleotide Steps
,”
Biophys. J.
0006-3495,
89
(
6
), pp.
3721
3740
.
19.
Cloutier
,
T. E.
, and
Widom
,
J.
, 2004, “
Spontaneous Sharp Bending of Double-Stranded DNA
,”
Mol. Cell
1097-2765,
14
(
3
), pp.
355
362
.
20.
Du
,
Q.
,
Smith
,
C.
,
Shiffeldrim
,
N.
,
Vologodskaia
,
M.
, and
Vologodskii
,
A.
, 2005, “
Cyclization of Short DNA Fragments and Bending Fluctuations of the Double Helix
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
15
), pp.
5397
5402
.
21.
Wiggins
,
P. A.
,
Phillips
,
R.
, and
Nelson
,
P. C.
, 2005, “
Exact Theory of Kinkable Elastic Polymers
,”
Phys. Rev. E
1063-651X,
71
(
2
), p.
021909
.
22.
Mehta
,
R. A.
, and
Kahn
,
J. D.
, 1999, “
Designed Hyperstable Lac Repressor-DNA Loop Topologies Suggest Alternative Loop Geometries
,”
J. Mol. Biol.
0022-2836,
294
(
1
), pp.
67
77
.
23.
Morgan
,
M. A.
,
Okamoto
,
K.
,
Kahn
,
J. D.
, and
English
,
D. S.
, 2005, “
Single-Molecule Spectroscopic Determination of Lac Repressor-DNA Loop Conformation
,”
Biophys. J.
0006-3495,
89
(
4
), pp.
2588
2596
.
24.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-Alpha Method
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
60
(
2
), pp.
371
375
.
25.
Gobat
,
J. I.
, and
Grosenbaugh
,
M. A.
, 2001, “
Application of the Generalized-Alpha Method to the Time Integration of the Cable Dynamics Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
37-38
), pp.
4817
4829
.
26.
Gobat
,
J. I.
,
Grosenbaugh
,
M. A.
, and
Triantafyllou
,
M. S.
, 2002, “
Generalized-Alpha Time Integration Solutions for Hanging Chain Dynamics
,”
J. Eng. Mech.
0733-9399,
128
(
6
), pp.
677
687
.
27.
Shimada
,
J.
, and
Yamakawa
,
H.
, 1984, “
Ring-Closure Probabilities for Twisted Wormlike Chains: Application to DNA
,”
Macromolecules
0024-9297,
17
(
4
), pp.
689
698
.
28.
Zhang
,
Y. L.
, and
Crothers
,
D. M.
, 2003, “
Statistical Mechanics of Sequence-Dependent Circular DNA and Its Application for DNA Cyclization
,”
Biophys. J.
0006-3495,
84
(
1
), pp.
136
153
.
29.
Popov
,
Y. O.
, and
Tkachenko
,
A. V.
, 2005, “
Effects of Kinks on DNA Elasticity
,”
Phys. Rev. E
1063-651X,
71
(
5
), p.
051905
.
30.
Wilson
,
D. P.
,
Lillian
,
T. D.
,
Goyal
,
S.
,
Perkins
,
N. C.
,
Tkachenko
,
A.
, and
Meiners
,
J. C.
, 2007, “
Modeling the Entropic Cost of DNA Looping
,”
Biophys. J.
0006-3495, p.
540A
; available at: http://www.biophysics.org/abstracts/
31.
Howard
,
J.
, 2001,
Mechanics of Motor Proteins and the Cytoskeleton
,
Sinauer Associates
,
Sunderland
.
32.
Hagerman
,
P. J.
, 1988, “
Flexibility of DNA
,”
Annu. Rev. Biophys. Biophys. Chem.
0883-9182,
17
, pp.
265
286
.
33.
Gabrielian
,
A.
, and
Pongor
,
S.
, 1996, “
Correlation of Intrinsic DNA Curvature With DNA Property Periodicity
,”
FEBS Lett.
0014-5793,
393
(
1
), pp.
65
68
.
34.
Weaver
,
R.
, 2007,
Molecular Biology
,
McGraw-Hill
,
Boston
.
35.
Baumann
,
C. G.
,
Smith
,
S. B.
,
Bloomfield
,
V. A.
, and
Bustamante
,
C.
, 1997, “
Ionic Effects on the Elasticity of Single DNA Molecules
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
(
12
), pp.
6185
6190
.
36.
Strick
,
T. R.
,
Allemand
,
J. F.
,
Bensimon
,
D.
,
Bensimon
,
A.
, and
Croquette
,
V.
, 1996, “
The Elasticity of a Single Supercoiled DNA Molecule
,”
Science
0036-8075,
271
(
5257
), pp.
1835
1837
.
37.
Balaeff
,
A.
,
Mahadevan
,
L.
, and
Schulten
,
K.
, 2006, “
Modeling DNA Loops Using the Theory of Elasticity
,”
Phys. Rev. E
1063-651X,
73
(
3
), p.
031919
.
You do not currently have access to this content.