This paper is devoted to the theoretical and experimental investigation of a sample automotive belt-pulley system subjected to tension fluctuations. The equation of motion for transverse vibrations leads to a Duffing oscillator parametrically excited. The analysis is performed via the multiple scales approach for predicting the nonlinear response, considering longitudinal viscous damping. An experimental setup gives rise to nonlinear parametric instabilities and also exhibits more complex phenomena. The experimental investigation validates the assumptions made and the proposed model.
Issue Section:
Research Papers
1.
Beikmann
, R. S.
, Perkins
, N. C.
, and Ulsoy
, A. G.
, 1997, “Design and Analysis of Automotive Belt Drive Systems for Steady State Performance
,” ASME J. Mech. Des.
1050-0472, 119
, pp. 162
–168
.2.
Zhang
, L.
, and Zu
, J. W.
, 1999, “One-to-One Auto-Parametric Resonance in Serpentine Belt Drive Systems
,” J. Sound Vib.
0022-460X, 232
, pp. 783
–806
.3.
Bechtel
, S. E.
, Vohra
, S.
, Jacob
, K. I.
, and Carlson
, C. D.
, 2000, “The Stretching and Slipping of Belts and Fibers on Pulleys
,” ASME J. Appl. Mech.
0021-8936, 67
, pp. 197
–206
.4.
Gerbert
, G.
and Sorge
, F.
, 2002, “Full Sliding Adhesive-Like Contact of V-Belts
,” ASME J. Mech. Des.
1050-0472, 124
, pp. 706
–712
.5.
Kong
, L.
, and Parker
, R. G.
, 2005, “Steady Mechanics of Belt-Pulley Systems
,” ASME J. Appl. Mech.
0021-8936, 72
, pp. 25
–34
.6.
Leamy
, M. J.
, and Perkins
, N. C.
, 1998, “Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,” ASME J. Vibr. Acoust.
0739-3717, 120
, pp. 909
–916
.7.
Michon
, G.
, Manin
, L.
, and Dufour
, R.
, 2005, “Hysteretic Behavior of a Belt Tensioner, Modeling and Experimental Investigation
,” J. Vib. Control
1077-5463, 11
(9
), pp. 1147
–1158
.8.
Parker
, R. G.
, and Lin
, Y.
, 2004, “Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuation
,” ASME J. Appl. Mech.
0021-8936, 68
, pp. 49
–57
.9.
Pellicano
, F.
, Catellani
, G.
, and Fregolent
, A.
, 2004, “Parametric Instability of Belts, Theory and Experiments
,” Comput. Struct.
0045-7949, 82
, pp. 81
–91
.10.
Mockensturm
, E.
, Perkins
, N.
, and Ulsoy
, A.
, 1996, “Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,” ASME J. Vibr. Acoust.
0739-3717, 118
, pp. 346
–351
.11.
Mockensturm
, E.
, and Guo
, J.
, 2005, “Nonlinear Vibration of Parametrically Excited Viscoelastic Axially Moving Media
,” ASME J. Appl. Mech.
0021-8936, 72
, pp. 374
–380
.12.
Berlioz
, A.
, and Lamarque
, C. H.
, 2005, “A Non-Linear Model for the Dynamic of an Inclined Cable
,” J. Sound Vib.
0022-460X, 279
, pp. 619
–639
.13.
Perkins
, N. C.
, 1992, “Modal Interactions in the Nonlinear Response of Elastic Cables Under Parametric/External Excitation
,” Int. J. Non-Linear Mech.
0020-7462, 27
(2
), pp. 233
–250
.14.
Rega
, G.
, and Benedettini
, F.
, 1989, “Planar Non-Linear Oscillations of Elastic Cables Under Subharmonic Resonance Conditions
,” J. Sound Vib.
0022-460X, 132
(3
), pp. 367
–381
.15.
Berlioz
, A.
, Der Hagopian
, J.
, Dufour
, R.
, and Draoui
, E.
, 1996, “Dynamic Behavior of a Drill-String. Experimental Investigation of Lateral Instabilities
,” ASME J. Vibr. Acoust.
0739-3717, 118
, pp. 292
–298
.16.
Dufour
, R.
, and Berlioz
, A.
, 1998, “Parametric Instability of a Beam Due to Axial Excitations and to Boundary Conditions
,” ASME J. Vibr. Acoust.
0739-3717, 120
, pp. 461
–467
.17.
Thurman
, A. L.
, and Mote
, Jr., C. D.
, 1969, “Free, Periodic, Non-Linear Oscillation of an Axially Moving String
,” ASME J. Appl. Mech.
0021-8936, 36
, pp. 83
–91
.18.
Nayfeh
, A. H.
, and Mook
, D. T.
, 1979, Nonlinear Oscillations
, Wiley
, New York
.19.
Orloske
, K.
, Leamy
, M. J.
, and Parker
, R. G.
, 2006, “Flexural-Torsion Buckling of Misaligned Axially Moving Beam. I. Three-Dimensional Modeling, Equilibria, and Bifurcations
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 4297
–4322
.20.
Orloske
, K.
, and Parker
, R. G.
, 2006, “Flexural-Torsion Buckling of Misaligned Axially Moving Beam. II. Vibration and Stability Analysis
,” Int. J. Solids Struct.
0020-7683, 43
, pp. 4323
–4341
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.