A complex nonlinear system under state feedback control with a time delay corresponding to two coupled nonlinear oscillators with a parametric excitation is investigated by an asymptotic perturbation method based on Fourier expansion and time rescaling. Four coupled equations for the amplitude and the phase of solutions are derived. In the system without control, phase-locked solutions with period equal to the parametric excitation period are possible only if the oscillator amplitudes are equal, but they depend on the system parameters and excitation amplitude. In many cases, the amplitudes of periodic solutions do not correspond to the technical requirements. It is demonstrated that, if the vibration control terms are added, stable periodic solutions with arbitrarily chosen amplitude and phase can be accomplished. Therefore, an effective vibration control is possible if appropriate time delay and feedback gains are chosen.

1.
Oueni
,
S. S.
,
Nayfeh
,
A. H.
, and
Pratt
,
J. R.
, 1998, “
A Nonlinear Vibration Absorber for Flexible Structures
,”
Nonlinear Dyn.
0924-090X,
15
, pp.
259
282
.
2.
Atay
,
F. M.
, 1998, “
van der Pol’S Oscillator Under Delayed Feedback
,”
J. Sound Vib.
0022-460X,
218
, pp.
333
339
.
3.
Hu
,
H.
,
Dowell
,
E. H.
, and
Virgin
,
L. N.
, 1998, “
Resonances of a Harmonically Forced Duffing Oscillator With Time Delay State Feedback
,”
Nonlinear Dyn.
0924-090X,
15
, pp.
311
327
.
4.
Mahmoud
,
G. M.
, 1998, “
Approximate Solutions of a Class of Complex Nonlinear Dynamical Systems
,”
Physica A
0378-4371,
253
, pp.
211
222
.
5.
Oueni
,
S. S.
,
Chin
,
C.-M.
, and
Nayfeh
,
A. H.
, 1998, “
Dynamics of a Cubic Nonlinear Vibration Absorber
,”
Nonlinear Dyn.
0924-090X,
20
, pp.
283
295
.
6.
Gu
,
G.
,
Chen
,
X.
,
Sparks
,
A. G.
, and
Bandra
,
S. S.
, 1999, “
Bifurcation Stabilization With Local Output Feedback
,”
SIAM J. Control Optim.
0363-0129,
37
, pp.
934
956
.
7.
Chen
,
G.
,
Moiola
,
J. L.
, and
Wang
,
H. O.
, 2000, “
Bifurcation Control: Theories, Methods, and Applications
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
10
, pp.
511
548
.
8.
Hy
,
H.
, and
Zh
,
W.
, 2000, “
Nonlinear Dynamics of Controlled Mechanical Systems With Time Delays
,”
Prog. Nat. Sci.
1002-0071,
10
, pp.
801
811
.
9.
Mahmoud
,
G. M.
, and
Aly
,
S. A.
, 2000, “
Periodic Attractors of Complex Damped Non-Linear Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
35
, pp.
309
323
.
10.
Mahmoud
,
G. M.
, and
Aly
,
S. A.
, 2000, “
On Periodic Solutions of Parametrically Excited Complex Nonlinear Dynamical Systems
,”
Physica A
0378-4371,
278
, pp.
390
404
.
11.
Ji
,
J. C.
, 2001, “
Local Bifurcation Control of a Forced Single-Degree-of-Freedom Nonlinear System: Saddle-Node Bifurcation
,”
Nonlinear Dyn.
0924-090X,
25
, pp.
369
382
.
12.
Mahmoud
,
G. M.
,
Mohamed
,
A. A.
, and
Aly
,
S. A.
, 2001, “
Strange Attractors and Chaos Control in Periodically Forced Complex Duffing Oscillators
,”
Physica A
0378-4371,
292
, pp.
193
206
.
13.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuki
,
Y.
, 2000, “
Response and Stability of Strongly Nonlinear Oscillators Under Wide-Band Random Excitation
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
1235
1250
.
14.
Ji
,
J. C.
, and
Leung
,
A. Y. T.
, 2000, “
Resonances of a Nonlinear SDOF System With Two Time-Delays on Linear Feedback Control
,”
J. Sound Vib.
0022-460X,
253
, pp.
985
1000
.
15.
Ji
,
J. C.
, and
Leung
,
A. Y. T.
, 2000, “
Bifurcation Control of a Parametrically Excited Duffing System
,”
Nonlinear Dyn.
0924-090X,
27
, pp.
411
417
.
16.
Xu
,
J.
, and
Chung
,
K. W.
, 2003, “
Effects of Time Delayed Position Feedback on a van der Pol-Duffing Oscillators
,”
Physica D
0167-2789,
180
, pp.
17
39
.
17.
Kakmeni
,
F. M. M.
,
Bowong
,
S.
,
Chawoua
,
C. T.
, and
Kaptouom
,
E.
, 2004, “
Strange Attractors and Chaos Control in a Duffing-van der pol Oscillator With Two External Periodic Forces
,”
J. Sound Vib.
0022-460X,
277
, pp.
783
799
.
18.
Li
,
X.
,
Ji
,
J. C.
,
Hansen
,
C. H.
, and
Tan
,
C.
, 2006, “
The Response of a Duffing-van der Pol Oscillator Under Delayed Feedback Control
,”
J. Sound Vib.
0022-460X,
291
, pp.
644
655
.
19.
Maccari
,
A.
, 2001, “
The Response of a Parametrically Excited van der Pol Oscillator to a Time Delay State Feedback
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
105
119
.
20.
Maccari
,
A.
, 2005, “
Vibration Control for the Primary Resonance of the van der Pol Oscillator by a Time Delay State Feedback
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
123
131
.
21.
Maccari
,
A.
, 2003, “
Vibration Control for the Primary Resonance of a Cantilever Beam by a Time Delay State Feedback
,”
J. Sound Vib.
0022-460X,
259
, pp.
241
251
.
22.
Maccari
,
A.
, 2005, “
Vibration Control for Two Nonlinearly Coupled and Parametrically Excited van der Pol Oscillators
,”
Phys. Scr.
0031-8949,
72
, pp.
112
118
.
You do not currently have access to this content.