A generalized damped Beck’s column under pulsating actions is considered. The nonlinear partial integrodifferential equations of motion and the associated boundary conditions, expanded up to cubic terms, are tackled through a perturbation approach. The multiple scales method is applied to the continuous model in order to obtain the bifurcation equations in the neighborhood of a Hopf bifurcation point in primary parametric resonance. This codimension-2 bifurcation entails two control variables, namely, the amplitude of the static and dynamic components of the follower force, playing the role of detuning and bifurcation parameters, respectively. In the postcritical analysis bifurcation diagrams and relevant phase portraits are examined. Two bifurcation paths associated with specific values of the follower force static component are discussed and the birth of new stable period-2 subharmonic motion is observed.

1.
Langthjem
,
M. A.
, and
Sugiyama
,
Y.
, 2000, “
Dynamic Stability of Columns Subjected to Follower Loads: A Survey
,”
J. Sound Vib.
0022-460X,
238
(
5
), pp.
809
851
.
2.
Bolotin
,
V. V.
, 1963,
Non-Conservative Problems of the Theory of Elastic Stability
,
Pergamon
,
Oxford
.
3.
Ziegler
,
H.
, 1968,
Principles of Structural Stability
,
Blaisdell
,
Waltham, MA
.
4.
Leipholz
,
H.
, 1980,
Stability of Elastic Systems
,
Sijthoff and Noordhoff
,
Alphen aan den Rijn
.
5.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Holden-Day Series in Mathematical Physics
,
Holden-Day
,
San Francisco, CA
.
6.
Luongo
,
A.
, and
Paolone
,
A.
, 1997, “
Perturbation Methods for Bifurcation Analysis From Multiple Nonresonant Complex Eigenvalues
,”
Nonlinear Dyn.
0924-090X,
14
, pp.
193
210
.
7.
Luongo
,
A.
,
Paolone
,
A.
, and
Di Egidio
,
A.
, 2002, “
Multiple Scale Bifurcation Analysis for Finite-Dimensional Autonomous Systems
,” in
Recent Research Developments in Sound and Vibration
, Vol.
1
,
Transworld Research Network
,
Kerala, India
.
8.
Paolone
,
A.
,
Vasta
,
M.
, and
Luongo
,
A.
, 2006, “
Flexural Torsional Bifurcations of a Cantilever Beam Under Potential and Circulatory Forces I: Non-Linear Model and Stability Analysis
,”
Int. J. Non-Linear Mech.
0020-7462,
41
(
4
), pp.
586
594
.
9.
Paolone
,
A.
,
Vasta
,
M.
, and
Luongo
,
A.
, 2006, “
Flexural Torsional Bifurcations of a Cantilever Beam Under Potential and Circulatory Forces II: Post-Critical Analysis
,”
Int. J. Non-Linear Mech.
0020-7462,
41
(
4
), pp.
595
604
.
10.
Di Egidio
,
A.
,
Luongo
,
A.
,
Paolone
,
A.
, 2007, “
Linear and Nonlinear Interactions Between Static and Dynamic Bifurcations of Damped Planar Beams
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
88
98
.
11.
Ganesan
,
N.
, and
Kadoli
,
R.
, 2004, “
A Study on the Dynamic Stability of a Cylindrical Shell Conveying a Pulsatile Flow of Hot Fluid
,”
J. Sound Vib.
0022-460X,
274
, pp.
953
984
.
12.
Rand
,
R.
,
Barcilon
,
A.
, and
Morrison
,
T.
, 2005, “
Parametric Resonance of Hopf Bifurcation
,”
Nonlinear Dyn.
0924-090X,
39
, pp.
411
421
.
13.
Troger
,
H.
, and
Steindl
,
A.
, 2001, “
Methods for Dimension Reduction and Their Application in Non Linear Dynamics
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
2147
3131
.
14.
Nayfeh
,
A. H.
, 1998, “
Reduced-Order Models of Weakly Non-Linear Spatially Continuous Systems
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
105
125
.
15.
Villaggio
,
P.
, 1997,
Mathematical Models for Elastic Structures
,
Cambridge University Press
,
Cambridge
.
16.
Antman
,
S. S.
, 1995,
Nonlinear Problems of Elasticity
,
Springer
,
New York
.
17.
Capriz
,
G.
, 1981, “
A Contribution to the Theory of Rods
,”
Riv. Mat. Univ. Parma
0035-6298,
7
(
4
), pp.
489
506
.
18.
Oden
,
J. T.
, and
Reddy
,
J. N.
, 1982,
Variational Methods in Theoretical Mechanics
,
Springer-Verlag
,
New York
.
19.
Troger
,
H.
, and
Steindl
,
A.
, 1991,
Nonlinear Stability and Bifurcation Theory
,
Springer
,
Wien
.
You do not currently have access to this content.