In this study, a procedure to account for transverse shear deformation in the absolute nodal coordinate formulation is presented. In the absolute nodal coordinate formulation, shear deformation is usually defined by employing the slope vectors in the element transverse direction. This leads to the description of deformation modes that are, in practical problems, associated with high frequencies. These high frequencies, in turn, complicate the time integration procedure burdening numerical performance. In this study, the description of transverse shear deformation is accounted for in a two-dimensional beam element based on the absolute nodal coordinate formulation without the use of transverse slope vectors. In the introduced shear deformable beam element, slope vectors are replaced by vectors that describe the orientation of the beam cross-section. This procedure represents a simple enhancement that does not decrease the accuracy or numerical performance of elements based on the absolute nodal coordinate formulation. Numerical results are presented in order to demonstrate the accuracy of the introduced element in static and dynamic cases. The numerical results obtained using the introduced element agree with the results obtained using previously proposed shear deformable beam elements.

1.
Shabana
,
A. A.
, 1997, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
1
(
3
), pp.
339
348
.
2.
Escalona
,
J. L.
,
Hussien
,
H.
, and
Shabana
,
A. A.
, 1998, “
Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics
,”
J. Sound Vib.
0022-460X,
214
, pp.
833
851
.
3.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
606
621
.
4.
Shabana
,
A. A.
, 1998, “
Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
293
306
.
5.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
, 2003, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
10
(
1
), pp.
17
43
.
6.
Omar
,
M. A.
, and
Shabana
,
A. A.
, 2001, “
A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation
,”
J. Sound Vib.
0022-460X,
243
(
3
), pp.
565
576
.
7.
Kerkkänen
,
K.
,
Garcia-Vallejo
,
D.
, and
Mikkola
,
A. M.
, 2006, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
0924-090X,
43
(
3
), pp.
239
256
.
8.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2003, “
Description of Elastic Forces Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
34
, pp.
53
74
.
9.
Garcia-Vallejo
,
D.
,
Mikkola
,
A. M.
, and
Escalona
,
J. L.
, “
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates
,”
Nonlinear Dyn.
in press.
10.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2005, “
Analysis of Higher and Lower Order Elements for the Absolute Nodal Coordinate Formulation
,”
Proceedings of the ASME Fifth International Conference on Multibody Systems, Nonlinear Dynamics, and Control
,
ASME
,
New York
, Paper No. DETC2005-84827.
11.
Sugiyama
,
H.
, and
Shabana
,
A. A.
, 2004, “
On the Use of Implicit Integration Methods and the Absolute Nodal Coordinate Formulation in the Analysis of Elasto-Plastic Deformation Problems
,”
Nonlinear Dyn.
0924-090X,
37
(
3
), pp.
245
270
.
12.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
, 2005, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computer Information in Engineering Conference
,
Long Beach, CA
.
13.
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2000, “
Development of Simple Models for the Elastic Forces in the Absolute Nodal Co-ordinate Formulation
,”
J. Sound Vib.
0022-460X,
235
(
4
), pp.
539
565
.
14.
Przemieniecki
,
J. S.
, 1968,
Theory of Matrix Structural Analysis
,
McGraw-Hill
,
New York
.
15.
Narayanaswani
,
R.
, and
Adelman
,
H. M.
, 1974, “
Inclusion of Transverse Shear Deformation in Finite Element Displacement Formulations
,”
AIAA J.
0001-1452,
12
(
11
), pp.
1613
1614
.
16.
Cowper
,
G. R.
, 1966, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
335
340
.
17.
Dufva
,
K.
,
Sopanen
,
J.
, and
Mikkola
,
A.
, 2005, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
0022-460X,
280
(
3–5
), pp.
719
738
.
18.
von Dombrowski
,
S.
, 2002, “
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
1384-5640,
8
(
4
), pp.
409
432
.
You do not currently have access to this content.